67,664 research outputs found
Active learning based laboratory towards engineering education 4.0
Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version
Microservices and Machine Learning Algorithms for Adaptive Green Buildings
In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings
Decision-making and problem-solving methods in automation technology
The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming
Managing a Fleet of Autonomous Mobile Robots (AMR) using Cloud Robotics Platform
In this paper, we provide details of implementing a system for managing a
fleet of autonomous mobile robots (AMR) operating in a factory or a warehouse
premise. While the robots are themselves autonomous in its motion and obstacle
avoidance capability, the target destination for each robot is provided by a
global planner. The global planner and the ground vehicles (robots) constitute
a multi agent system (MAS) which communicate with each other over a wireless
network. Three different approaches are explored for implementation. The first
two approaches make use of the distributed computing based Networked Robotics
architecture and communication framework of Robot Operating System (ROS) itself
while the third approach uses Rapyuta Cloud Robotics framework for this
implementation. The comparative performance of these approaches are analyzed
through simulation as well as real world experiment with actual robots. These
analyses provide an in-depth understanding of the inner working of the Cloud
Robotics Platform in contrast to the usual ROS framework. The insight gained
through this exercise will be valuable for students as well as practicing
engineers interested in implementing similar systems else where. In the
process, we also identify few critical limitations of the current Rapyuta
platform and provide suggestions to overcome them.Comment: 14 pages, 15 figures, journal pape
Categorization of indoor places by combining local binary pattern histograms of range and reflectance data from laser range finders
This paper presents an approach to categorize typical places in indoor environments using 3D scans provided by a laser range finder. Examples of such places are offices, laboratories, or kitchens. In our method, we combine the range and reflectance data from the laser scan for the final categorization of places. Range and reflectance images are transformed into histograms of local binary patterns and combined into a single feature vector. This vector is later classified using support vector machines. The results of the presented experiments demonstrate the capability of our technique to categorize indoor places with high accuracy. We also show that the combination of range and reflectance information improves the final categorization results in comparison with a single modality
- …
