1,757 research outputs found

    Hierarchical Visualization of Materials Space with Graph Convolutional Neural Networks

    Full text link
    The combination of high throughput computation and machine learning has led to a new paradigm in materials design by allowing for the direct screening of vast portions of structural, chemical, and property space. The use of these powerful techniques leads to the generation of enormous amounts of data, which in turn calls for new techniques to efficiently explore and visualize the materials space to help identify underlying patterns. In this work, we develop a unified framework to hierarchically visualize the compositional and structural similarities between materials in an arbitrary material space with representations learned from different layers of graph convolutional neural networks. We demonstrate the potential for such a visualization approach by showing that patterns emerge automatically that reflect similarities at different scales in three representative classes of materials: perovskites, elemental boron, and general inorganic crystals, covering material spaces of different compositions, structures, and both. For perovskites, elemental similarities are learned that reflects multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically showing characteristic boron local environments. For inorganic crystals, the similarity and stability of local coordination environments are shown combining different center and neighbor atoms. The method could help transition to a data-centered exploration of materials space in automated materials design.Comment: 22 + 7 pages, 6 + 5 figure

    An evolutionary variational autoencoder for perovskite discovery

    Get PDF
    Machine learning (ML) techniques emerged as viable means for novel materials discovery and target property determination. At the vanguard of discoverable energy materials are perovskite crystalline materials, which are known for their robust design space and multifunctionality. Previous efforts for simulating the discovery of novel perovskites via ML have often been limited to straightforward tabular-dataset models and compositional phase-field representations. Therefore, the present study makes a contribution in expanding ML capability by demonstrating the efficacy of a new deep evolutionary learning framework for discovering stable and functional inorganic materials that adopts the complex A2BB′X6 and AA′BB′X6 double perovskite stoichiometries. The model design is called the Evolutionary Variational Autoencoder for Perovskite Discovery (EVAPD), which is comprised of a semi-supervised variational autoencoder (SS-VAE), an evolutionary-based genetic algorithm, and a one-to-one similarity analytical model. The genetic algorithm performs adaptive metaheuristic search operations for finding the most theoretically stable candidates emerging from a target-learnable latent space of the generative SS-VAE model. The integrated similarity analytical model assesses the deviation in three-dimensional atomic coordination between newly generated perovskites and proven standards, and as such, recommends the most promising and experimentally feasible candidates. Using Density Functional Theory (DFT), the novel perovskites are subjected to thorough variable-cell optimization and property determination. The current study presents 137 new perovskite materials generated by the proposed EVAPD model and identifies potential candidates for photovoltaic and optoelectronic applications. The new materials data are archived at NOMAD repository (doi.org/10.17172/NOMAD/2023.05.31-1) and are made openly available to interested users

    Leveraging Language Representation for Material Recommendation, Ranking, and Exploration

    Full text link
    Data-driven approaches for material discovery and design have been accelerated by emerging efforts in machine learning. While there is enormous progress towards learning the structure to property relationship of materials, methods that allow for general representations of crystals to effectively explore the vast material search space and identify high-performance candidates remain limited. In this work, we introduce a material discovery framework that uses natural language embeddings derived from material science-specific language models as representations of compositional and structural features. The discovery framework consists of a joint scheme that, given a query material, first recalls candidates based on representational similarity, and ranks the candidates based on target properties through multi-task learning. The contextual knowledge encoded in language representations is found to convey information about material properties and structures, enabling both similarity analysis for recall, and multi-task learning to share information for related properties. By applying the discovery framework to thermoelectric materials, we demonstrate diversified recommendations of prototype structures and identify under-studied high-performance material spaces, including halide perovskite, delafossite-like, and spinel-like structures. By leveraging material language representations, our framework provides a generalized means for effective material recommendation, which is task-agnostic and can be applied to various material systems

    Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks

    Full text link
    Leveraging new data sources is a key step in accelerating the pace of materials design and discovery. To complement the strides in synthesis planning driven by historical, experimental, and computed data, we present an automated method for connecting scientific literature to synthesis insights. Starting from natural language text, we apply word embeddings from language models, which are fed into a named entity recognition model, upon which a conditional variational autoencoder is trained to generate syntheses for arbitrary materials. We show the potential of this technique by predicting precursors for two perovskite materials, using only training data published over a decade prior to their first reported syntheses. We demonstrate that the model learns representations of materials corresponding to synthesis-related properties, and that the model's behavior complements existing thermodynamic knowledge. Finally, we apply the model to perform synthesizability screening for proposed novel perovskite compounds.Comment: Added new funding support to the acknowledgments section in this versio

    High throughput thermal conductivity of high temperature solid phases: The case of oxide and fluoride perovskites

    Full text link
    Using finite-temperature phonon calculations and machine-learning methods, we calculate the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0 K, 300 K and 1000 K. We find 92 mechanically stable compounds at high temperatures -- including 36 not mentioned in the literature so far -- for which we calculate the thermal conductivity. We demonstrate that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual T−1T^{-1} behavior. Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures.Comment: 9 pages, 6 figure
    • …
    corecore