The combination of high throughput computation and machine learning has led
to a new paradigm in materials design by allowing for the direct screening of
vast portions of structural, chemical, and property space. The use of these
powerful techniques leads to the generation of enormous amounts of data, which
in turn calls for new techniques to efficiently explore and visualize the
materials space to help identify underlying patterns. In this work, we develop
a unified framework to hierarchically visualize the compositional and
structural similarities between materials in an arbitrary material space with
representations learned from different layers of graph convolutional neural
networks. We demonstrate the potential for such a visualization approach by
showing that patterns emerge automatically that reflect similarities at
different scales in three representative classes of materials: perovskites,
elemental boron, and general inorganic crystals, covering material spaces of
different compositions, structures, and both. For perovskites, elemental
similarities are learned that reflects multiple aspects of atom properties. For
elemental boron, structural motifs emerge automatically showing characteristic
boron local environments. For inorganic crystals, the similarity and stability
of local coordination environments are shown combining different center and
neighbor atoms. The method could help transition to a data-centered exploration
of materials space in automated materials design.Comment: 22 + 7 pages, 6 + 5 figure