553 research outputs found

    The MacWilliams Identity for the Skew Rank Metric

    Full text link
    The weight distribution of an error correcting code is a crucial statistic in determining it's performance. One key tool for relating the weight of a code to that of it's dual is the MacWilliams Identity, first developed for the Hamming metric. This identity has two forms: one is a functional transformation of the weight enumerators, while the other is a direct relation of the weight distributions via (generalised) Krawtchouk polynomials. The functional transformation form can in particular be used to derive important moment identities for the weight distribution of codes. In this paper, we focus on codes in the skew rank metric. In these codes, the codewords are skew-symmetric matrices, and the distance between two matrices is the skew rank metric, which is half the rank of their difference. This paper develops a qq-analog MacWilliams Identity in the form of a functional transformation for codes based on skew-symmetric matrices under their associated skew rank metric. The method introduces a skew-qq algebra and uses generalised Krawtchouk polynomials. Based on this new MacWilliams Identity, we then derive several moments of the skew rank distribution for these codes.Comment: 39 page

    The MacWilliams Identity for the Hermitian Rank Metric

    Full text link
    Error-correcting codes have an important role in data storage and transmission and in cryptography, particularly in the post-quantum era. Hermitian matrices over finite fields and equipped with the rank metric have the potential to offer enhanced security with greater efficiency in encryption and decryption. One crucial tool for evaluating the error-correcting capabilities of a code is its weight distribution and the MacWilliams Theorem has long been used to identify this structure of new codes from their known duals. Earlier papers have developed the MacWilliams Theorem for certain classes of matrices in the form of a functional transformation, developed using qq-algebra, character theory and Generalised Krawtchouk polynomials, which is easy to apply and also allows for moments of the weight distribution to be found. In this paper, recent work by Kai-Uwe Schmidt on the properties of codes based on Hermitian matrices such as bounds on their size and the eigenvalues of their association scheme is extended by introducing a negative-qq algebra to establish a MacWilliams Theorem in this form together with some of its associated moments. The similarities in this approach and in the paper for the Skew-Rank metric by Friedlander et al. have been emphasised to facilitate future generalisation to any translation scheme.Comment: 39 pages. arXiv admin note: substantial text overlap with arXiv:2210.1615

    Partitions of Matrix Spaces With an Application to qq-Rook Polynomials

    Full text link
    We study the row-space partition and the pivot partition on the matrix space FqnΓ—m\mathbb{F}_q^{n \times m}. We show that both these partitions are reflexive and that the row-space partition is self-dual. Moreover, using various combinatorial methods, we explicitly compute the Krawtchouk coefficients associated with these partitions. This establishes MacWilliams-type identities for the row-space and pivot enumerators of linear rank-metric codes. We then generalize the Singleton-like bound for rank-metric codes, and introduce two new concepts of code extremality. Both of them generalize the notion of MRD codes and are preserved by trace-duality. Moreover, codes that are extremal according to either notion satisfy strong rigidity properties analogous to those of MRD codes. As an application of our results to combinatorics, we give closed formulas for the qq-rook polynomials associated with Ferrers diagram boards. Moreover, we exploit connections between matrices over finite fields and rook placements to prove that the number of matrices of rank rr over Fq\mathbb{F}_q supported on a Ferrers diagram is a polynomial in qq, whose degree is strictly increasing in rr. Finally, we investigate the natural analogues of the MacWilliams Extension Theorem for the rank, the row-space, and the pivot partitions

    Classification of poset-block spaces admitting MacWilliams-type identity

    Full text link
    In this work we prove that a poset-block space admits a MacWilliams-type identity if and only if the poset is hierarchical and at any level of the poset, all the blocks have the same dimension. When the poset-block admits the MacWilliams-type identity we explicit the relation between the weight enumerators of a code and its dual.Comment: 8 pages, 1 figure. Submitted to IEEE Transactions on Information Theor
    • …
    corecore