3,853 research outputs found

    Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain

    Get PDF
    There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-C1 cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatpla4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases

    Gene Expression Profiling of Corpus luteum Reveals Important Insights about Early Pregnancy in Domestic Sheep

    Get PDF
    The majority of pregnancy loss in ruminants occurs during the preimplantation stage, which is thus the most critical period determining reproductive success. Here, we performed a comparative transcriptome study by sequencing total mRNA from corpus luteum (CL) collected during the preimplantation stage of pregnancy in Finnsheep, Texel and F1 crosses. A total of 21,287 genes were expressed in our data. Highly expressed autosomal genes in the CL were associated with biological processes such as progesterone formation (STAR, CYP11A1, and HSD3B1) and embryo implantation (e.g., TIMP1, TIMP2 and TCTP). Among the list of differentially expressed genes, sialic acid-binding immunoglobulin (Ig)-like lectins (SIGLEC3, SIGLEC14, SIGLEC8), ribosomal proteins (RPL17, RPL34, RPS3A, MRPS33) and chemokines (CCL5, CCL24, CXCL13, CXCL9) were upregulated in Finnsheep, while four multidrug resistance-associated proteins (MRPs) were upregulated in Texel ewes. A total of 17 known genes and two uncharacterized noncoding RNAs (ncRNAs) were differentially expressed in breed-wise comparisons owing to the flushing diet effect. The significantly upregulated TXNL1 gene indicated potential for embryonic diapause in Finnsheep and F1. Moreover, we report, for the first time in any species, several genes that are active in the CL during early pregnancy (including TXNL1, SIGLEC14, SIGLEC8, MRP4, and CA5A).202

    Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death.

    Get PDF
    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer

    Dual role of cAMP in the transcriptional regulation of multidrug resistance-associated protein 4 (MRP4) in pancreatic adenocarcinoma cell lines

    Get PDF
    Cyclic AMP represents one of the most studied signaling molecules and its role in proliferation and differentiation processes has been well established. Intracellular cAMP levels are tightly regulated where the MRP4 transporter plays a major role. In the present study, we sought to establish whether cAMP modulated MRP4 expression in pancreatic adenocarcinoma cell lines. Quantitative PCR and western blot studies showed that cAMP-increasing agents enhanced MRP4 transcripts and protein levels in PANC-1 cells. Reporter luciferase experiments carried out in pancreatic AR42J cells showed that intracellular cAMP up-regulates MRP4 through an Epac2- and Rap1- mediated mechanism whereas extracellular cAMP reduced MRP4 promoter activity by a MEK/ERK-mediated pathway. Present results show that cAMP regulates MRP4 promoter activity, and further indicate that the balance between intracellular and extracellular cAMP levels determines MRP4 expression.Fil: Carozzo, Alejandro Enrique. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Diez, Federico Ruben. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gómez, Natalia. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cabrera, Maia Diana Eliana. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; ArgentinaFil: Shayo, Carina Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; ArgentinaFil: Davio, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, Natalia Brenda. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin

    Role of MRP transporters in regulating antimicrobial drug inefficacy and oxidative stress-induced pathogenesis during HIV-1 and TB infections.

    Get PDF
    Multi-Drug Resistance Proteins (MRPs) are members of the ATP binding cassette (ABC) drug-efflux transporter superfamily. MRPs are known to regulate the efficacy of a broad range of anti-retroviral drugs (ARV) used in highly active antiretroviral therapy (HAART) and antibacterial agents used in Tuberculus Bacilli (TB) therapy. Due to their role in efflux of glutathione (GSH) conjugated drugs, MRPs can also regulate cellular oxidative stress, which may contribute to both HIV and/or TB pathogenesis. This review focuses on the characteristics, functional expression, and modulation of known members of the MRP family in HIV infected cells exposed to ARV drugs and discusses their known role in drug-inefficacy in HIV/TB-induced dysfunctions. Currently, nine members of the MRP family (MRP1-MRP9) have been identified, with MRP1 and MRP2 being the most extensively studied. Details of the other members of this family have not been known until recently, but differential expression has been documented in inflammatory tissues. Researchers have found that the distribution, function, and reactivity of members of MRP family vary in different types of lymphocytes and macrophages, and are differentially expressed at the basal and apical surfaces of both endothelial and epithelial cells. Therefore, the prime objective of this review is to delineate the role of MRP transporters in HAART and TB therapy and their potential in precipitating cellular dysfunctions manifested in these chronic infectious diseases. We also provide an overview of different available options and novel experimental strategies that are being utilized to overcome the drug resistance and disease pathogenesis mediated by these membrane transporters

    Изучение психологической готовности студентов к саморазвитию и самосовершенствованию

    Get PDF
    Multidrug resistance proteins (MRPs) are transmembrane proteins with the potential to export a wide range of substances in the extracellular space preventing cells from toxification. MRP4 and 5, on which this investigation is focused, particularly mediate nucleoside-analogue export, i.e. guanosine 3´, 5´-cyclic monophosphate (cGMP) and conjugated nucleosides. cGMP plays an important signaling role in melanocytic physiology, especially in the UV-B induced melanogenesis. Previous studies could show that long-term exposure to mechanical stress in terms of hypergravity leads to an increased cGMP efflux in non-metastatic melanoma cell lines, whereas the highly metastatic phenotype appeared to be insensitive. Biochemical analysis let assume that overexpressed MRP4, 5 and 8 could be responsible for these effects. Based on these results the aim of the present study was to investigate the effects of hypergravity (5xg for 24 h) on mRNA and protein levels of MRP4, 5, and/or 8. The data show that the mRNA as well as the protein levels of MRP4 and MRP5 were about 1.4-fold higher in non-metastatic melanoma cells exposed to hypergravity in comparison to 1xg controls. In contrary, the expressions of MRP4 and 5 in highly metastatic cells remained unaffected. For MRP8 we basically measured low mRNA and protein expression levels in all investigated cell lines independent of gravity alterations. Our studies indicate that the previously found elevated cGMP export in hypergravity could be a consequence of an upregulated expression of MRP4 and MRP5 in non-metastatic melanoma cells, whereas a MRP8-driven export can be excluded. Furthermore, the elevated cGMP efflux and MRP expressions seems to be a part of an adaptation process for non-metastatic melanoma cells to hypergravity conditions. Since enhanced MRP expression is responsible for a decreased drug uptake in cells, a gravity-modified MRP expression on long-term space flights can lead to an altered drug tolerance and efficiency in astronauts
    corecore