1,109 research outputs found

    Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: An alternative to conventional spiral MR Fingerprinting.

    Get PDF
    PURPOSE: To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters. METHODS: The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8s and this method was validated on two different phantoms and three healthy volunteer brains in vivo. RESULTS: Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (<4% deviation for T1 and <6% deviation for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable. CONCLUSION: The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.The research leading to these results has received funding from the European Commission H2020 Framework Programme (H2020- MSCAITN- 2014), number 642685 MacSeNet, the Engineering and Physical Sciences Research Council (EPSRC) platform Compressed Quantitative MRI grant, number EP/M019802/1 and the Scottish Research Partnership in Engineering (SRPe) award, number SRPe PECRE1718/ 17

    Cram\'er-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI

    Full text link
    We extend the traditional framework for estimating subspace bases that maximize the preserved signal energy to additionally preserve the Cram\'er-Rao bound (CRB) of the biophysical parameters and, ultimately, improve accuracy and precision in the quantitative maps. To this end, we introduce an \textit{approximate compressed CRB} based on orthogonalized versions of the signal's derivatives with respect to the model parameters. This approximation permits singular value decomposition (SVD)-based minimization of both the CRB and signal losses during compression. Compared to the traditional SVD approach, the proposed method better preserves the CRB across all biophysical parameters with negligible cost to the preserved signal energy, leading to reduced bias and variance of the parameter estimates in simulation. In vivo, improved accuracy and precision are observed in two quantitative neuroimaging applications, permitting the use of smaller basis sizes in subspace reconstruction and offering significant computational savings

    WKGM: Weight-K-space Generative Model for Parallel Imaging Reconstruction

    Full text link
    Deep learning based parallel imaging (PI) has made great progresses in recent years to accelerate magnetic resonance imaging (MRI). Nevertheless, it still has some limitations, such as the robustness and flexibility of existing methods have great deficiency. In this work, we propose a method to explore the k-space domain learning via robust generative modeling for flexible calibration-less PI reconstruction, coined weight-k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space augmentation design are efficiently incorporated for score-based generative model training, resulting in good and robust reconstructions. In addition, WKGM is flexible and thus can be synergistically combined with various traditional k-space PI models, which can make full use of the correlation between multi-coil data and realizecalibration-less PI. Even though our model was trained on only 500 images, experimental results with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results with the well-learned k-space generative prior.Comment: 11pages, 12 figure

    Complex diffusion-weighted image estimation via matrix recovery under general noise models

    Get PDF
    We propose a patch-based singular value shrinkage method for diffusion magnetic resonance image estimation targeted at low signal to noise ratio and accelerated acquisitions. It operates on the complex data resulting from a sensitivity encoding reconstruction, where asymptotically optimal signal recovery guarantees can be attained by modeling the noise propagation in the reconstruction and subsequently simulating or calculating the limit singular value spectrum. Simple strategies are presented to deal with phase inconsistencies and optimize patch construction. The pertinence of our contributions is quantitatively validated on synthetic data, an in vivo adult example, and challenging neonatal and fetal cohorts. Our methodology is compared with related approaches, which generally operate on magnitude-only data and use data-based noise level estimation and singular value truncation. Visual examples are provided to illustrate effectiveness in generating denoised and debiased diffusion estimates with well preserved spatial and diffusion detail.Comment: 26 pages, 9 figure
    corecore