11 research outputs found

    A Grid Based Distributed Cooperative Environment for Health Care Research

    Get PDF
    International audienceProviding a distributed cooperative environment is a challenging task, which requires a middleware infrastructure that provides, among others, management of distributed shared data, synchronization, consistency, recovery, security and privacy support. In this paper, we present the ECADeG project which proposes a layered architecture for developing distributed cooperative environments running on top of a desktop grid middleware that can encompass multiple organizations. We also present a particular cooperative environment for supporting scientific research focused at the health domain which uses the services supplied by the ECADeG architecture in order to allow researchers to share access to multiple institutions databases, visualize and analyze data by means of data mining techniques, edit research documents cooperatively, exchange information through forums and chats, etc.. Such a rich cooperative environment helps thus the establishment of partnerships between health care professionals and their institutions

    Scheduling moldable {BSP} tasks

    Get PDF
    Our main goal in this paper is to study the scheduling of parallel BSP tasks on clusters of computers. We focus our attention on special characteristics of BSP tasks, which can use less processors than the original required, but with a particular cost model. We discuss the problem of scheduling a batch of BSP tasks on a fixed number of computers. The objective is to minimize the completion time of the last task (makespan). We show that the problem is difficult and present approximation algorithms and heuristics. We finish the paper presenting the results of extensive simulations under different workloads

    On-demand distributed image processing over an adaptive Campus-Grid

    Get PDF
    This thesis explores how scientific applications, which are based upon short jobs (seconds and minutes) can capitalize upon the idle workstations of a Campus-Grid. These resources are donated on a voluntary basis, and consequently, the Campus-Grid is constantly adapting and the availability of workstations changes. Typically, to utilize these resources a Condor system or equivalent would be used. However, such systems are designed with different trade-offs and incentives in mind and therefore do not provide intrinsic support for short jobs. The motivation for creating a provisioning scenario for short jobs is that Image Processing, as well as other areas of scientific analysis, are typically composed of short running jobs, but still require parallel solutions. Much of the literature in this area comments on the challenges of performing such analysis efficiently and effectively even when dedicated resources are in use. The main challenges are: latency and scheduling penalties, granularity and the potential for very short jobs. A volunteer Grid retains these challenges but also adds further challenges. These can be summarized as: unpredictable re source availability and longevity, multiple machine owners and administrators who directly affect the operating environment. Ultimately, this creates the requirement for well conceived and effective fault management strategies. However, these are typically not in place to enable transparent fault-free job administration for the user. This research demonstrates that these challenges are answerable, and that in doing so opportunistically sourced Campus-Grid resources can host disparate applications constituted of short running jobs, of as little as one second in length. This is demonstrated by the significant improvements in performance when the system presented here was compared to a well established Condor system. Here, improvements are increased job efficiency from 60–70% to 95%–100%, up to a 99% reduction in application makespan and up to a 13000% increase in the efficiency of resource utilization. The Condor pool in use is approximately 1,600 workstations distributed across 27 administrative domains of Cardiff University. The application domain of this research is Matlab-based image processing, and the application area used to demonstrate the approach is the analysis of Magnetic Resonance Imagery (MRI). However, the presented approach is generalizable to any application domain with similar characteristics

    A grid computing framework for commercial simulation packages

    Get PDF
    An increased need for collaborative research among different organizations, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users non-trivial access to geographically dispersed computing resources (processors, storage, applications, data, instruments, etc.) that are administered in multiple computer domains. The term grid computing or grids is popularly used to refer to such distributed systems. A broader definition of grid computing includes the use of computing resources within an organization for running organization-specific applications. This research is in the context of using grid computing within an enterprise to maximize the use of available hardware and software resources for processing enterprise applications. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by simulation practitioners using Windows-based commercially available simulation packages to model simulations in industry. These packages are commonly referred to as Commercial Off-The-Shelf (COTS) Simulation Packages (CSPs). The study identifies several higher level grid services that could be potentially used to support the practise of simulation in industry. It proposes a grid computing framework to investigate these services in the context of CSP-based simulations. This framework is called the CSP-Grid Computing (CSP-GC) Framework. Each identified higher level grid service in this framework is referred to as a CSP-specific service. A total of six case studies are presented to experimentally evaluate how grid computing technologies can be used together with unmodified simulation packages to support some of the CSP-specific services. The contribution of this thesis is the CSP-GC framework that identifies how simulation practise in industry may benefit from the use of grid technology. A further contribution is the recognition of specific grid computing software (grid middleware) that can possibly be used together with existing CSPs to provide grid support. With its focus on end-users and end-user tools, it is intended that this research will encourage wider adoption of grid computing in the workplace and that simulation users will derive benefit from using this technology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume
    corecore