4 research outputs found

    Tasking in accelerators: performance evaluation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this work, we analyze the implications and results of implementing dynamic parallelism, concurrent kernels and CUDA Graphs to solve task-oriented problems. As a benchmark we propose three different methods for solving DGEMM operation on tiled-matrices; which might be the most popular benchmark for performance analysis. For the algorithms that we study, we present significant differences in terms of data dependencies, synchronization and granularity. The main contribution of this work is determining which of the previous approaches work better for having multiple task running concurrently in a single GPU, as well as stating the main limitations and benefits of every technique. Using dynamic parallelism and CUDA Streams we were able to achieve up to 30% speedups and for CUDA Graph API up to 25x acceleration outperforming state of the art results.This project has received funding from the EPEEC project from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 801051, from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII ( TIN2015-65316-P ) and the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Pro-gramació i Entorns d’Execució Paral·lels (2014-SGR-1051 ). Finally, this project also received funding from the Spanish Ministry of Economy and Competitiveness under the Juan de la Cierva Grant Agreement No IJCI-2017-33511 , and from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No. 749516 .Peer ReviewedPostprint (author's final draft

    MPI+OpenMP tasking scalability for multi-morphology simulations of the human brain

    No full text
    The simulation of the behavior of the human brain is one of the most ambitious challenges today with a non-end of important applications. We can find many different initiatives in the USA, Europe and Japan which attempt to achieve such a challenging target. In this work, we focus on the most important European initiative (the Human Brain Project) and on one of the models developed in this project. This tool simulates the spikes triggered in a neural network by computing the voltage capacitance on the neurons’ morphology, being one of the most precise simulators today. In the present work, we have evaluated the use of MPI+OpenMP tasking on top of this framework. We prove that this approach is able to achieve a good scaling even when computing a relatively low workload (number of neurons) per node. One of our targets consists of achieving not only a highly scalable implementation, but also to develop a tool with a high degree of abstraction without losing control and performance by using MPI+OpenMP tasking. The main motivation of this work is the evaluation of this cutting-edge simulation on multi-morphology neural networks. The simulation of a high number of neurons, which are completely different among them, is an important challenge. In fact, in the multi-morphology simulations, we find an important unbalancing between the nodes, mainly due to the differences in the neurons, which causes an important under-utilization of the available resources. In this work, the authors present and evaluate mechanisms to deal with this and reduce the time of this kind of simulations considerably.We would like to appreciate the valuable feedback and help provided by the main developers of the Arbor simulator: Benjamin Cumming (ETH Zürich) and Alexander Peyser (Jülich Supercomputing Center). This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 720270 (HBP SGA1 and SGA2), from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316- P) and the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Paral · lels (2014-SGR-1051). Finally, this project also received funding from the Spanish Ministry of Economy and Competitiveness under the Juan de la Cierva Grant Agreement No IJCI-2017-33511, and from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No. 749516.Peer ReviewedPostprint (author's final draft)Postprint (author's final draft

    MPI+OpenMP tasking scalability for multi-morphology simulations of the human brain

    No full text
    The simulation of the behavior of the human brain is one of the most ambitious challenges today with a non-end of important applications. We can find many different initiatives in the USA, Europe and Japan which attempt to achieve such a challenging target. In this work, we focus on the most important European initiative (the Human Brain Project) and on one of the models developed in this project. This tool simulates the spikes triggered in a neural network by computing the voltage capacitance on the neurons’ morphology, being one of the most precise simulators today. In the present work, we have evaluated the use of MPI+OpenMP tasking on top of this framework. We prove that this approach is able to achieve a good scaling even when computing a relatively low workload (number of neurons) per node. One of our targets consists of achieving not only a highly scalable implementation, but also to develop a tool with a high degree of abstraction without losing control and performance by using MPI+OpenMP tasking. The main motivation of this work is the evaluation of this cutting-edge simulation on multi-morphology neural networks. The simulation of a high number of neurons, which are completely different among them, is an important challenge. In fact, in the multi-morphology simulations, we find an important unbalancing between the nodes, mainly due to the differences in the neurons, which causes an important under-utilization of the available resources. In this work, the authors present and evaluate mechanisms to deal with this and reduce the time of this kind of simulations considerably.Peer Reviewe
    corecore