341 research outputs found

    Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems with Partial CSIT: A Rate-Splitting Approach

    Full text link
    This paper considers the Sum-Rate (SR) maximization problem in downlink MU-MISO systems under imperfect Channel State Information at the Transmitter (CSIT). Contrary to existing works, we consider a rather unorthodox transmission scheme. In particular, the message intended to one of the users is split into two parts: a common part which can be recovered by all users, and a private part recovered by the corresponding user. On the other hand, the rest of users receive their information through private messages. This Rate-Splitting (RS) approach was shown to boost the achievable Degrees of Freedom (DoF) when CSIT errors decay with increased SNR. In this work, the RS strategy is married with linear precoder design and optimization techniques to achieve a maximized Ergodic SR (ESR) performance over the entire range of SNRs. Precoders are designed based on partial CSIT knowledge by solving a stochastic rate optimization problem using means of Sample Average Approximation (SAA) coupled with the Weighted Minimum Mean Square Error (WMMSE) approach. Numerical results show that in addition to the ESR gains, the benefits of RS also include relaxed CSIT quality requirements and enhanced achievable rate regions compared to conventional transmission with NoRS.Comment: accepted to IEEE Transactions on Communication

    A Rate-Splitting Approach To Robust Multiuser MISO Transmission

    Full text link
    For multiuser MISO systems with bounded uncertainties in the Channel State Information (CSI), we consider two classical robust design problems: maximizing the minimum rate subject to a transmit power constraint, and power minimization under a rate constraint. Contrary to conventional strategies, we propose a Rate-Splitting (RS) strategy where each message is divided into two parts, a common part and a private part. All common parts are packed into one super common message encoded using a shared codebook and decoded by all users, while private parts are independently encoded and retrieved by their corresponding users. We prove that RS-based designs achieve higher max-min Degrees of Freedom (DoF) compared to conventional designs (NoRS) for uncertainty regions that scale with SNR. For the special case of non-scaling uncertainty regions, RS contrasts with NoRS and achieves a non-saturating max-min rate. In the power minimization problem, RS is shown to combat the feasibility problem arising from multiuser interference in NoRS. A robust design of precoders for RS is proposed, and performance gains over NoRS are demonstrated through simulations.Comment: To appear in ICASSP 201

    Robust Transmission in Downlink Multiuser MISO Systems: A Rate-Splitting Approach

    Get PDF
    We consider a downlink multiuser MISO system with bounded errors in the Channel State Information at the Transmitter (CSIT). We first look at the robust design problem of achieving max-min fairness amongst users (in the worst-case sense). Contrary to the conventional approach adopted in literature, we propose a rather unorthodox design based on a Rate-Splitting (RS) strategy. Each user's message is split into two parts, a common part and a private part. All common parts are packed into one super common message encoded using a public codebook, while private parts are independently encoded. The resulting symbol streams are linearly precoded and simultaneously transmitted, and each receiver retrieves its intended message by decoding both the common stream and its corresponding private stream. For CSIT uncertainty regions that scale with SNR (e.g. by scaling the number of feedback bits), we prove that a RS-based design achieves higher max-min (symmetric) Degrees of Freedom (DoF) compared to conventional designs (NoRS). For the special case of non-scaling CSIT (e.g. fixed number of feedback bits), and contrary to NoRS, RS can achieve a non-saturating max-min rate. We propose a robust algorithm based on the cutting-set method coupled with the Weighted Minimum Mean Square Error (WMMSE) approach, and we demonstrate its performance gains over state-of-the art designs. Finally, we extend the RS strategy to address the Quality of Service (QoS) constrained power minimization problem, and we demonstrate significant gains over NoRS-based designs.Comment: Accepted for publication in IEEE Transactions on Signal Processin

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio

    Rate-Splitting Multiple Access for Multibeam Satellite Communications

    Full text link
    This paper studies the beamforming design problem to achieve max-min fairness (MMF) in multibeam satellite communications. Contrary to the conventional linear precoding (NoRS) that relies on fully treating any residual interference as noise, we consider a novel multibeam multicast beamforming strategy based on Rate-Splitting Multiple Access (RSMA). RSMA relies on linearly precoded ratesplitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at receivers to enable a flexible framework for non-orthogonal transmission and robust interbeam interference management. Aiming at achieving MMF among multiple co-channel multicast beams, a per-feed available power constrained optimization problem is formulated with different quality of channel state information at the transmitter (CSIT). The superiority of RS for multigroup multicast and multibeam satellite communication systems compared with conventional scheme (NoRS) is demonstrated via simulations

    A Hierarchical Rate Splitting Strategy for FDD Massive MIMO under Imperfect CSIT

    Full text link
    In a multiuser MIMO broadcast channel, the rate performance is affected by the multiuser interference when the Channel State Information at the Transmitter (CSIT) is imperfect. To tackle the interference problem, a Rate-Splitting (RS) approach has been proposed recently, which splits one user's message into a common and a private part, and superimposes the common message on top of the private messages. The common message is drawn from a public codebook and should be decoded by all users. In this paper, we propose a novel and general framework, denoted as Hierarchical Rate Splitting (HRS), that is particularly suited to FDD massive MIMO systems. HRS simultaneously transmits private messages intended to each user and two kinds of common messages that can be decoded by all users and by a subset of users, respectively. We analyse the asymptotic sum rate of HRS under imperfect CSIT. A closed-form power allocation is derived which provides insights into the effects of system parameters. Finally, simulation results validate the significant sum rate gain of HRS over various baselines.Comment: Accepted paper at IEEE CAMAD 201
    • …
    corecore