7 research outputs found

    Iterative Averaging in the Quest for Best Test Error

    Full text link
    We analyse and explain the increased generalisation performance of iterate averaging using a Gaussian process perturbation model between the true and batch risk surface on the high dimensional quadratic. We derive three phenomena \latestEdits{from our theoretical results:} (1) The importance of combining iterate averaging (IA) with large learning rates and regularisation for improved regularisation. (2) Justification for less frequent averaging. (3) That we expect adaptive gradient methods to work equally well, or better, with iterate averaging than their non-adaptive counterparts. Inspired by these results\latestEdits{, together with} empirical investigations of the importance of appropriate regularisation for the solution diversity of the iterates, we propose two adaptive algorithms with iterate averaging. These give significantly better results compared to stochastic gradient descent (SGD), require less tuning and do not require early stopping or validation set monitoring. We showcase the efficacy of our approach on the CIFAR-10/100, ImageNet and Penn Treebank datasets on a variety of modern and classical network architectures

    Random matrix theory and the loss surfaces of neural networks

    Full text link
    Neural network models are one of the most successful approaches to machine learning, enjoying an enormous amount of development and research over recent years and finding concrete real-world applications in almost any conceivable area of science, engineering and modern life in general. The theoretical understanding of neural networks trails significantly behind their practical success and the engineering heuristics that have grown up around them. Random matrix theory provides a rich framework of tools with which aspects of neural network phenomenology can be explored theoretically. In this thesis, we establish significant extensions of prior work using random matrix theory to understand and describe the loss surfaces of large neural networks, particularly generalising to different architectures. Informed by the historical applications of random matrix theory in physics and elsewhere, we establish the presence of local random matrix universality in real neural networks and then utilise this as a modeling assumption to derive powerful and novel results about the Hessians of neural network loss surfaces and their spectra. In addition to these major contributions, we make use of random matrix models for neural network loss surfaces to shed light on modern neural network training approaches and even to derive a novel and effective variant of a popular optimisation algorithm. Overall, this thesis provides important contributions to cement the place of random matrix theory in the theoretical study of modern neural networks, reveals some of the limits of existing approaches and begins the study of an entirely new role for random matrix theory in the theory of deep learning with important experimental discoveries and novel theoretical results based on local random matrix universality.Comment: 320 pages, PhD thesi
    corecore