15,063 research outputs found

    Sequential Bayesian inference for implicit hidden Markov models and current limitations

    Full text link
    Hidden Markov models can describe time series arising in various fields of science, by treating the data as noisy measurements of an arbitrarily complex Markov process. Sequential Monte Carlo (SMC) methods have become standard tools to estimate the hidden Markov process given the observations and a fixed parameter value. We review some of the recent developments allowing the inclusion of parameter uncertainty as well as model uncertainty. The shortcomings of the currently available methodology are emphasised from an algorithmic complexity perspective. The statistical objects of interest for time series analysis are illustrated on a toy "Lotka-Volterra" model used in population ecology. Some open challenges are discussed regarding the scalability of the reviewed methodology to longer time series, higher-dimensional state spaces and more flexible models.Comment: Review article written for ESAIM: proceedings and surveys. 25 pages, 10 figure

    Subspace Leakage Analysis and Improved DOA Estimation with Small Sample Size

    Full text link
    Classical methods of DOA estimation such as the MUSIC algorithm are based on estimating the signal and noise subspaces from the sample covariance matrix. For a small number of samples, such methods are exposed to performance breakdown, as the sample covariance matrix can largely deviate from the true covariance matrix. In this paper, the problem of DOA estimation performance breakdown is investigated. We consider the structure of the sample covariance matrix and the dynamics of the root-MUSIC algorithm. The performance breakdown in the threshold region is associated with the subspace leakage where some portion of the true signal subspace resides in the estimated noise subspace. In this paper, the subspace leakage is theoretically derived. We also propose a two-step method which improves the performance by modifying the sample covariance matrix such that the amount of the subspace leakage is reduced. Furthermore, we introduce a phenomenon named as root-swap which occurs in the root-MUSIC algorithm in the low sample size region and degrades the performance of the DOA estimation. A new method is then proposed to alleviate this problem. Numerical examples and simulation results are given for uncorrelated and correlated sources to illustrate the improvement achieved by the proposed methods. Moreover, the proposed algorithms are combined with the pseudo-noise resampling method to further improve the performance.Comment: 37 pages, 10 figures, Submitted to the IEEE Transactions on Signal Processing in July 201

    The Lazy Bootstrap. A Fast Resampling Method for Evaluating Latent Class Model Fit

    Get PDF
    The latent class model is a powerful unsupervised clustering algorithm for categorical data. Many statistics exist to test the fit of the latent class model. However, traditional methods to evaluate those fit statistics are not always useful. Asymptotic distributions are not always known, and empirical reference distributions can be very time consuming to obtain. In this paper we propose a fast resampling scheme with which any type of model fit can be assessed. We illustrate it here on the latent class model, but the methodology can be applied in any situation. The principle behind the lazy bootstrap method is to specify a statistic which captures the characteristics of the data that a model should capture correctly. If those characteristics in the observed data and in model-generated data are very different we can assume that the model could not have produced the observed data. With this method we achieve the flexibility of tests from the Bayesian framework, while only needing maximum likelihood estimates. We provide a step-wise algorithm with which the fit of a model can be assessed based on the characteristics we as researcher find important. In a Monte Carlo study we show that the method has very low type I errors, for all illustrated statistics. Power to reject a model depended largely on the type of statistic that was used and on sample size. We applied the method to an empirical data set on clinical subgroups with risk of Myocardial infarction and compared the results directly to the parametric bootstrap. The results of our method were highly similar to those obtained by the parametric bootstrap, while the required computations differed three orders of magnitude in favour of our method.Comment: This is an adaptation of chapter of a PhD dissertation available at https://pure.uvt.nl/portal/files/19030880/Kollenburg_Computer_13_11_2017.pd

    Multiple-dose design and bias-reducing methods for limiting dilution assays

    Get PDF
    This paper gives an overview of several (mostly recent) statistical contributions to the theory of Limiting and Serial Dilution Assays (LDA's, SDA's). A simple and useful method is presented for the setup of a design for an LDA or an SDA. This method is based on several user-supplied design parameters, consisting in the researcher's advance information and other parameters inherent to the particular problem. The commonly used Maximum Likelihood (ML) and Minimum Chi-square methods for the estimation of the unknown parameter in an LDA or an SDA are described and compared to several bias-reducing estimation methods, e.g. jackknife and bootstrap versions of the ML method. One particular jackknife version is recommended
    • …
    corecore