154 research outputs found

    Low complexity wireless sensors for power-efficient communiation and energy harvesting

    Get PDF

    Single-RF Multi-antenna Transmission with Peak Power Constraint

    Get PDF

    Exploiting Constructive Mutual Coupling in P2P MIMO by Analog-Digital Phase Alignment

    Get PDF
    In this paper, we propose a joint analog-digital (A/D) beamforming scheme for the point-to-point multiple-input-multiple-output system, where we exploit mutual coupling by optimizing the load impedances of the transmit antennas. Contrary to the common conception that mutual coupling strictly harms the system performance, we show that mutual coupling can be beneficial by exploiting the concept of constructive interference. By changing the value of each load impedance for the antenna array based on convex optimization, the mutual coupling effect can be manipulated so that the resulting interference aligns constructively to the useful signal vector. We first prove that the full elimination of mutual coupling effect is not achievable solely by tuning the values of the antenna load impedances. We then introduce the proposed A/D scheme for both PSK and QAM modulations, where performance gains with respect to conventional techniques are obtained. The implementation of the proposed schemes is also discussed, where a lookup table can be built to efficiently apply the calculated load impedances. The numerical results show that the proposed schemes can achieve an improved performance compared to systems with fixed mutual coupling, especially when the antenna spacing is small

    MIMO Transmission for Single-fed ESPAR with Quantized Loads

    Get PDF
    Compact parasitic arrays in the form of electronically steerable parasitic antenna radiators (ESPARs) have emerged as a new antenna structure that achieves multipleinput- multiple-output (MIMO) transmission with a single RF chain. In this paper, we study the application of precoding on practical ESPARs, where the antennas are equipped with load impedances of quantized values. We analytically study the impact of the quantization on the system performance, where it is shown that while ideal ESPARs with ideal loads can achieve a similar performance to conventional MIMO, the performance of ESPARs will be degraded when only loads with quantized values are available. We further extend the performance analysis to imperfect channel state information (CSI). In order to alleviate the performance loss, we propose to approximate the ideal current vector by optimization, where a closed-form solution is further obtained. This enables the use of ESPARs in practice with quantized loads. Simulation results validate our analysis and show that a significant performance gain can be achieved with the proposed scheme over ESPARs with quantized loads. Finally, the tradeoff between performance and power consumption is shown to be favorable for the proposed ESPAR approaches compared to conventional MIMO, as evidenced by our energy efficiency results

    Energy efficient transmitter design with compact antenna for future wireless communication systems

    Get PDF
    This thesis explores a novel technique for transceiver design in future wireless systems, which is cloud radio access networks (CRANs) with single radio frequency (RF) chain antennas at each remote radio head (RRH). This thesis seeks to make three contributions. Firstly, it proposes a novel algorithm to solve the oscillatory/unstable behaviour of electronically steerable parasitic array radiators (ESPAR) when it provides multi-antenna functionality with a single RF chain. This thesis formulates an optimization problem and derives closed-form expressions when calculating the configuration of an ESPAR antenna (EA) for arbitrary signals transmission. This results in simplified processing at the transmitter. The results illustrate that the EA transmitter, when utilizing novel closed-form expressions, shows significant improvement over the performance of the EA transmitter without any pre-processing. It performs at nearly the same symbol error rate (SER) as standard multiple antenna systems. Secondly, this thesis illustrates how a practical peak power constraint can be put into an EA transceiver design. In an EA, all the antenna elements are fed centrally by a single power amplifier. This makes it more probable that during use, the power amplifier reaches maximum power during transmission. Considering limited power availability, this thesis proposes a new algorithm to achieve stable signal transmission. Thirdly, this thesis shows that an energy efficiency (EE) optimization problem can be formulated and solved in CRANs that deploy single RF chain antennas at RRHs. The closed-form expressions of the precoder and power allocation schemes to transmit desired signals are obtained to maximise EE for both single-user and multi-user systems. The results show that the CRANs with single RF chain antennas provide superior EE performance compared to the standard multiple antenna based systems

    Interference driven antenna selection for Massive Multi-User MIMO

    Get PDF
    Low-complexity linear precoders are known to be close-to-optimal for massive multi-input multi-output (M-MIMO) systems. However, the large number of antennas at the transmitter imposes high computational burdens and high hardware overloads. In line with the above, in this paper we propose a low complexity antenna selection (AS) scheme which selects the antennas that maximize constructive interference between the users. Our analyses show that the proposed AS algorithm, in combination with a simple matched filter (MF) precoder at the transmitter, is able to achieve better performances than systems equipped with a more complex channel inversion (CI) precoder and computationally expensive AS techniques. First, we give an analytical definition of constructive and destructive interference, based on the phase of the received signals from phase-shifted-keying (PSK) modulated transmissions. Then, we introduce the proposed antenna selection algorithm, which identifies the antenna subset with the highest constructive interference, maximizing the power received by the user. In our studies, we derive the computational burden of the proposed technique with a rigorous and thorough analysis and we identify a closed form expression of the upper bound received power at the user side. In addition, we evaluate in detail the power benefits of the proposed transmission scheme by defining an efficiency metric based on the achieved throughput. The results presented in this paper prove that antenna selection and green radio concepts can be jointly used for power efficient M-MIMO, as they lead to significant power savings and complexity reductions

    Tunable Load MIMO with Quantized Loads

    Get PDF
    In this paper, we study the application of precoding schemes on practical electronically steerable parasitic array radiators (ESPARs), where quantized load impedances are considered for each antenna element. The presence of quantization in the loads results in a performance loss for practical ESPARs. To alleviate the performance loss, we propose to approximate the ideal current vector with convex optimization, where it is further shown that the optimality is achieved by optimizing the feeding voltages only. Specifically, we obtain the closed-form expression when single-fed ESPARs are assumed. Numerical results show that the proposed quantization-robust scheme can achieve a significant performance gain over ESPARs with quantized loads

    Multiple-Antenna Systems: From Generic to Hardware-Informed Precoding Designs

    Get PDF
    5G-and-beyond communication systems are expected to be in a heterogeneous form of multiple-antenna cellular base stations (BSs) overlaid with small cells. The fully-digital BS structures can incur significant power consumption and hardware complexity. Moreover, the wireless BSs for small cells usually have strict size constraints, which incur additional hardware effects such as mutual coupling (MC). Consequently, the transmission techniques designed for future wireless communication systems should respect the hardware structures at the BSs. For this reason, in this thesis we extend generic downlink precoding to more advanced hardware-informed transmission techniques for a variety of BS structures. This thesis firstly extends the vector perturbation (VP) precoding to multiple-modulation scenarios, where existing VP-based techniques are sub-optimal. Subsequently, this thesis focuses on the downlink transmission designs for hardware effects in the form of MC, limited number of radio frequency (RF) chains, and low-precision digital-to-analog converters (DACs). For these scenarios, existing precoding techniques are either sub-optimal or not directly applicable due to the specific hardware constraints. In this context, this thesis first proposes analog-digital (AD) precoding methods for MC exploitation in compact single-user multiple-antenna systems with the concept of constructive interference, and further extends the idea of MC exploitation to multi-user scenarios with a joint optimisation on the precoding matrix and the mutual coupling effect. We further consider precoding for wireless BSs with a limited number of RF chains, in the form of compact parasitic antenna array as well as hybrid analog-digital structures designed for large-scale multiple-antenna systems. In addition, with a reformulation of the constructive interference, this thesis also considers the low-complexity precoding design for the use of low-resolution DACs for a massive-antenna array at the BSs. Analytical and numerical results reveal an improved performance of the proposed techniques compared to the state-of-the-art approaches, which validates the effectiveness of the introduced methods
    • …
    corecore