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Abstract

5G-and-beyond communication systems are expected to be in a heteroge-

neous form of multiple-antenna cellular base stations (BSs) overlaid with

small cells. The fully-digital BS structures can incur significant power con-

sumption and hardware complexity. Moreover, the wireless BSs for small

cells usually have strict size constraints, which incur additional hardware

effects such as mutual coupling (MC). Consequently, the transmission tech-

niques designed for future wireless communication systems should respect

the hardware structures at the BSs. For this reason, in this thesis we extend

generic downlink precoding to more advanced hardware-informed trans-

mission techniques for a variety of BS structures.

This thesis firstly extends the vector perturbation (VP) precoding to

multiple-modulation scenarios, where existing VP-based techniques are

sub-optimal. Subsequently, this thesis focuses on the downlink transmission

designs for hardware effects in the form of MC, limited number of radio fre-

quency (RF) chains, and low-precision digital-to-analog converters (DACs).

For these scenarios, existing precoding techniques are either sub-optimal or

not directly applicable due to the specific hardware constraints. In this con-

text, this thesis first proposes analog-digital (AD) precoding methods for

MC exploitation in compact single-user multiple-antenna systems with the

concept of constructive interference, and further extends the idea of MC ex-

ploitation to multi-user scenarios with a joint optimisation on the precoding

matrix and the mutual coupling effect. We further consider precoding for

wireless BSs with a limited number of RF chains, in the form of compact
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parasitic antenna array as well as hybrid analog-digital structures designed

for large-scale multiple-antenna systems. In addition, with a reformulation

of the constructive interference, this thesis also considers the low-complexity

precoding design for the use of low-resolution DACs for a massive-antenna

array at the BSs.

Analytical and numerical results reveal an improved performance of

the proposed techniques compared to the state-of-the-art approaches, which

validates the effectiveness of the introduced methods.
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Chapter 1

Introduction

Due to the rapid development of wireless applications such as cloud com-

puting, Internet of Things (IoTs) and physical layer security, and their im-

portant roles in modern wireless networks, the past few decades have wit-

nessed an exponential growth in both the wireless devices and the wire-

less data traffic [1]. Furthermore, recent studies in [2] have revealed that a

more than 60% annual growth rate can be expected in the next couple of

years. Consequently, the increasing need for higher data rates has stimu-

lated both the academia and industry to bring about new techniques, among

which multiple-input multiple-output (MIMO) [3, 4] has been widely ac-

knowledged as the most promising one for the past decades. Compared

to the single-antenna systems, multiple-antenna systems are able to greatly

improve the spectral efficiency via spatial multiplexing [5], and therefore

downlink precoding designs that achieve this goal have received extensive

research attention.

Currently, most of the existing research on the MIMO systems has been

conducted assuming perfect hardware components, where the imperfec-

tions in the hardware components have usually been neglected. For ex-

ample, the mutual coupling (MC) effect [6], which does not exist in single-

antenna systems, arises when the inter spacing between the adjacent antenna

elements is small compared to the carrier wavelength. The negligence of the

MC effect will usually lead to a performance degradation for MIMO systems
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in practical deployments [7], especially for size-constrained small-scale base

stations (BSs) towards the fifth generation (5G) and future wireless commu-

nications. Nevertheless, the hardware imperfection in the form of MC can

also be beneficial. For example, the compact parasitic-antenna systems can

exploit the MC effect to form the desired radiation pattern by the use of tun-

able antenna loads, where the total number of required radio frequency (RF)

chains at the BSs is reduced [8].

On the other hand, the large-scale or equivalently massive MIMO in-

troduced in [9, 10] has also rapidly risen as one of the most promising tech-

niques for the future 5G communications. Conceptually, massive MIMO is

the same as the generic multiple-antenna systems, with the number of an-

tennas scaled up to the order of hundreds or even thousands [9]. Compared

to small-scale MIMO, massive MIMO systems are able to offer unprece-

dented benefits, such as extremely high throughputs and extremely low bit

error rates (BERs) [10]. While the benefits from massive MIMO systems

are appealing, the practical implementation of massive MIMO is challeng-

ing due to the prohibitive hardware complexity [9]. Indeed, for hardware-

ideal MIMO BSs, each transmit antenna element needs to be connected to

one dedicated RF chain with a pair of infinite-resolution1 digital-to-analog

converters (DACs). Employing this approach for large-scale MIMO systems

will enforce the massive MIMO BSs to be equipped with an equally large

number of RF chains and pairs of high-resolution DACs. This requirement,

however, significantly increases the hardware costs and more importantly

the consequent power consumption for massive MIMO BSs, which is both

cost-inefficient and power-inefficient. For this reason, it is more preferable to

simplify the hardware structures in practical massive MIMO systems, where

the corresponding hardware costs are reduced, and a balance between per-

formance and hardware complexity is achieved [11].

Because of the considerations mentioned above, for small-scale compact

1In practical small-scale MIMO systems, high-resolution (usually more than 8 bits) DACs
are employed.
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MIMO BSs, recent research has focused on the techniques that reduce the

MC effect [12, 13]. In addition, the parasitic-antenna systems that can further

benefit from the MC effect have also been extensively studied [8, 14, 15]. For

the areas of massive MIMO, the hybrid analog-digital (AD) structures with

a reduced number of RF chains [11] and the employment of low-cost finite-

precision DACs [16] have both been introduced to balance performance,

hardware complexity and the consequent power consumption, where both

techniques have received increasing research attention. Given the great ne-

cessity of advanced techniques for a variety of wireless BS structures, this

thesis focuses on the designs of innovative and hardware-informed trans-

mission strategies for both small-scale and large-scale multiple-antenna BSs.

1.1 Aim and Motivation
While precoding approaches have been widely studied for multiple-antenna

systems, there still exist numbers of unresolved areas that require further

investigations, especially for size-constrained compact multiple-antenna BSs

and large-scale MIMO systems.

While it is well established that non-linear vector perturbation (VP)

precoding achieves a significant performance gain over linear precod-

ing schemes [17], generic VP approaches are not applicable to multiple-

modulation scenarios where multiple modulation types are employed, be-

cause the modulo basis for the sphere search is modulation-dependent.

In the existing literature, however, the introduced block-diagonalised VP

(BDVP) and user-grouping VP (UGVP) precoding approaches for multiple-

modulation cases [18] can only achieve a sub-optimal performance.

With respect to the MC effect that exists in compact multiple-antenna

BSs, the compensation methods for the MC effect have been extensively stud-

ied in [7, 19, 20] for generic fully-digital (FD) compact MIMO systems. Nev-

ertheless, these proposed approaches are from the perspective of antenna

design instead of a signal processing perspective, and thus are only limited
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to specific antenna arrays or carrier frequencies. On the other hand, instead

of compensating for this effect, there already exist studies on the exploita-

tion of the MC effect. Innovative compact parasitic-antenna systems, also

known as electronically steerable parasitic array radiators (ESPARs), were

firstly proposed in [14] to exploit the MC effect instead of avoiding this effect.

The transmission schemes for ESPARs in the beam-space domain have been

designed in [8, 15], while more recent studies extend the downlink precod-

ing designs for conventional MIMO systems to ESPARs by mapping the pre-

coded signals to the currents for the parasitic-antenna array [21, 22]. How-

ever, in practical implementation ESPARs can only employ tunable loads

with a finite precision. This is critical for the applications of ESPARs, as the

transmit signals are dependent on the values of the tunable antenna loads,

and the quantisation in the tunable loads may lead to a mismatch between

the desired and actual radiation pattern for ESPARs, which requires further

investigations. Moreover, it is still not clear in the existing literature whether

the exploitation of the MC effect by the use of tunable antenna loads in the

case of ESPARs can be extended to the conventional FD MIMO BSs to achieve

further performance gains.

For massive MIMO BSs, while the hybrid AD structures have been ex-

tensively studied [11, 23, 24], most of the contributions have focused on the

reduction in the hardware complexity, while ignoring their advantages in

the energy efficiency. With a reduced number of RF chains, the power con-

sumption at the BSs is greatly reduced, which achieves an energy-efficient

transmission. Particularly, this aspect is not limited to large-scale multiple-

antenna systems and can be extended to small-scale MIMO systems, which

motivates our study in energy-efficient MIMO SWIPT systems with hybrid

precoding. On the other hand, in the case of employing limited-precision

analog devices, most of the studies have focused on the performance analy-

ses with low-resolution analog-to-digital converters (ADCs) in the uplink

[25, 26]. For precoding techniques in the massive MIMO downlink with
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finite-precision DACs, there are only limited contributions in the existing

literature [16, 27, 28]. Moreover, these existing methods either suffer from a

significant performance loss compared to the ideal unquantised case [16, 27],

or include computationally-inefficient iterative algorithms [28]. This then

motivates the development of novel and more advanced precoding tech-

niques that can achieve a more favourable performance-complexity tradeoff.

1.2 Main Contributions
This thesis aims to compensate for the performance losses introduced by

the use of imperfect hardware components, and further exploit the spe-

cific hardware structures at the BSs to achieve an improved performance-

complexity tradeoff through the introduction of novel hardware-informed

downlink transmission methods. The main contributions of this thesis can

be summarised as follows:

• Introduction of both a joint VP (JVP) precoding and a joint constructive

VP (JCVP) for multiple-modulation scenarios (Chapter 3). The pro-

posed JVP approach is shown to achieve a comparable performance to

conventional VP precoding in multiple-modulation cases, where exist-

ing approaches achieve an inferior performance, while the proposed

JCVP method is shown to achieve a similar performance with a re-

duced computational cost.

• Exploitation of the MC effect for conventional FD compact point-to-

point (P2P) MIMO systems with tunable antenna loads via an optimi-

sation on the loads based on the constructive interference (CI) formu-

lation (Chapter 4). Numerical results reveal that further gains can be

obtained through the exploitation of the adaptive MC effect in compact

P2P MIMO systems with tunable loads.

• Extension of the MC exploitation to multiuser multiple-input single-

output (MU-MISO) systems in the downlink by the proposition of a
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joint AD precoding for signal-to-interference-plus-noise ratio (SINR)

balancing optimisation (Chapter 5). It is shown by simulation valida-

tion that the use of tunable antenna loads can achieve an improved

performance for both perfect channel state information (CSI) and im-

perfect CSI.

• Performance analyses for ESPARs in the presence of quantised antenna

loads with imperfect CSI, and design of a quantisation-robust down-

link transmission approach based on convex optimisation (Chapter 6).

The analytical results are shown to match the simulated results, and

the proposed robust method is shown to be capable of greatly allevi-

ating the performance loss by the quantisation in the antenna loads.

• Introduction of a hybrid precoding design via a virtual path selec-

tion approach for millimeter-wave (mmWave) communications, and

the application of hybrid precoding for the energy-efficient simulta-

neous wireless information and power transfer (SWIPT) systems via

a geometrical approach (Chapter 7). A close-to-optimal performance

is observed for the method based on virtual path selection, while the

improved energy efficiency is observed by the proposed algorithm for

the considered MIMO SWIPT systems.

• Design of a low-complexity symbol-scaling method for massive MIMO

downlink with 1-bit DACs, based on the CI formulation and coordinate

transformation (Chapter 8). The improved performance-complexity

tradeoff of the proposed symbol scaling approach compared to existing

schemes in the literature is validated by extensive numerical results.

1.3 Thesis Organisation
Subsequent to this introductory chapter, this thesis is organised following

the structure depicted in Fig. 1.1 and described in the sequel.
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Figure 1.1: Thesis Organisation

Chapter 2 provides a review of multiple-antenna systems, which consti-

tutes the basis of this thesis. In particular, this chapter focuses on the state-

of-the-art precoding techniques in the downlink. The introduction of two

typical hybrid BS structures that require a reduced number of RF chains is

also included.

Chapter 3 first introduces the proposed JVP precoding scheme for

multiple-modulation scenarios. The proposed method enables a joint sphere

search for the perturbation vectors for multiple modulations via a constella-

tion scaling approach. Building upon the proposed JVP approach and selec-

tive perturbation methods, a JCVP precoding is further introduced for both

phase-shifting keying (PSK) and multiple-modulation cases based on the

CI formulation, where a joint sphere-search and symbol-scaling approach

is proposed.

Chapter 4 presents a CI-based precoding that exploits the MC effect for

compact P2P MIMO systems with tunable antenna loads. It is firstly ana-

lytically proven that the MC effect cannot be fully eliminated by solely tun-
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ing the load values, followed by the introduction of the proposed precoding

method based on convex optimisation. The proposed approach manipulates

the load values on each antenna element, such that the interference intro-

duced by the MC effect aligns constructively to the useful signal vector. The

practical implementation of the proposed technique is further included and

discussed in detail.

Chapter 5 extends the exploitation of the MC effect to the multi-user

case and proposes a joint AD precoding for the downlink transmission. A

joint optimisation is firstly formulated with a SINR balancing optimisation

in the digital domain and an optimisation of the tunable antenna loads in the

analog domain, followed by the introduction of a low-complexity decoupled

approach. Subsequently, the case for quantised analog loads are considered

and a sequential search scheme is proposed based on a greedy algorithm to

efficiently obtain the desired load values. The robust designs for imperfect

CSI are also included.

Chapter 6 considers the downlink transmission for ESPARs in the pres-

ence of quantised loads and imperfect CSI. Mathematical analyses on the

performance of ESPARs with quantised loads are firstly performed for both

perfect CSI and imperfect CSI. A quantisation-robust downlink transmission

strategy that minimises the Euclidean distance between the desired and ac-

tual current vector for the ESPAR array is further proposed to alleviate the

mismatch by quantisation in the tunable antenna loads.

Chapter 7 presents a computationally efficient hybrid precoding design

via a virtual path selection method, where three distinct design criteria are

introduced and each achieves a different performance-complexity tradeoff.

The hybrid precoding is further extended to the case of MIMO SWIPT for the

purpose of an energy-efficient transmission, where both a low-complexity

approach and an iterative algorithm based on a geometrical representation

are proposed.

Chapter 8 proposes downlink transmission methods for massive MIMO
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downlink with hardware imperfections in the form of 1-bit DACs. Based on

the CI formulation, a quantised linear approach is first considered, where

the optimal precoding matrix is obtained. A non-linear mapping method

is further considered where we directly design the transmit signal vector.

A two-step relaxation-normalisation process is adopted to solve the non-

convex optimisation. A low-complexity three-stage symbol-scaling scheme

is further proposed, where the quantised transmit signal on each antenna

element is selected sequentially.

Chapter 9 concludes this thesis with a summary of the contributions

in the previous chapters, and discusses possible future extensions of the re-

search within the frame of this thesis.
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Chapter 2

Multiple-Antenna Wireless

Communication Systems

This chapter introduces fundamental concepts and techniques with respect

to multiple-antenna systems that are relevant to this thesis, which include

channel models, MC modelling and imperfect CSI models. In particular,

closed-form precoding approaches as well as precoding based on optimi-

sation are presented to compare their potential benefits and main draw-

backs. In addition, we briefly describe two typical hybrid AD precoding

structures at the BS. Throughout this thesis, we discuss narrowband single-

carrier multiple-antenna systems.

2.1 MIMO Communications - Fundamentals
Due to the increasing demand for higher data rates and reliability for wire-

less networks, MIMO techniques have appeared and received extensive re-

search attention [3, 5]. To support spatial multiplexing, parallel data streams

can be transmitted simultaneously with multiple antennas deployed at the

BS. To improve the reliability, space-time coding techniques can be employed

by sending copies of the same information across the antenna array [32].

In a wireless P2P MIMO system, as depicted in Fig. 2.1, the data sym-

bol vector is denoted as s, and one BS with Nt antennas transmits wireless

signals to a single receiver with a total number of Nr receive antennas. Math-
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Figure 2.1: A block diagram of point-to-point MIMO systems

ematically, the signal vector at the receiver can be expressed as


y1

y2
...

yNr

=


h1,1 h1,2 · · · h1,Nt

h2,1 h2,2 · · · h2,Nt

... ... . . . ...

hNr,1 hNr,2 · · · hNr,Nt




x1

x2
...

xNt

+


n1

n2
...

nNr

 , (2.1)

where each hi, j represents the complex channel gain from the j-th transmit

antenna to the i-th receive antenna, which will be discussed in detail in Chap-

ter 2.3. Each xm and yn denotes the transmit and received signal on the m-th

transmit antenna and n-th receive antenna, respectively. Each nk represents

the additive white Gaussian noise (AWGN) at the k-th receive antenna with

zero mean and variance σ2. Equivalently, (2.1) can be expressed in a matrix

form as

y = Hx+n. (2.2)

where x ∈ CNt×1 and y ∈ CNr×1 denote the transmit and receive signal vec-

tor, respectively. H ∈ CNr×Nt is the channel matrix, and n ∈ CNr×1 denotes

the noise vector, where equivalently we obtain n ∼ CN
(
0,σ2 · I

)
. When a

transmit pre-processing is employed for the data symbol vector s, we ex-

press x = Ts, where T is the transmit precoding matrix. At the receiver, a

post-processing is employed on the received signal vector y, and the symbol

vector ready for demodulation can be expressed as r = RHy.

Capacity: When perfect knowledge of the channel H is known at both

the transmitter and receiver, we can decompose the MIMO channel into sev-
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eral parallel and non-interfering single-input single-output (SISO) channels,

by the use of the singular value decomposition (SVD) [3]. Accordingly, for a

given maximum available transmit power, the capacity of the MIMO channel

can be obtained by a water-filling algorithm [3], i.e., more power is allocated

to better-conditioned wireless channels, while less or even zero power is al-

located to worse-conditioned wireless channels.

Diversity Gain: Diversity gain defines the improvement in the reliabil-

ity of the communication links [4, 32]. By receiving multiple (ideally inde-

pendent) copies of identical transmitted signals, the detection performance

can be improved based on combination techniques. In fact, the more inde-

pendent fading channels and copies, the faster BER drops as a function of

the transmit signal-to-noise ratio (SNR). Mathematically, the diversity gain

is defined as

d =− lim
ρ→∞

log{Pe (ρ)}
log{ρ}

, (2.3)

where ρ denotes the transmit SNR, and Pe (ρ) denotes the corresponding

error probability for a specific value of ρ .

Multiplexing Gain: The use of multiple antennas at the transmitters

and receivers can create an additional spatial dimension for communica-

tions, which is known as a degree of freedom gain or multiplexing gain [5].

This gain can be exploited by simultaneously transmitting multiple paral-

lel data streams, leading to an increase in the data rates with no additional

power invested. The multiplexing gain characterises the data rate improve-

ment by the deployment of multiple antennas, which is mathematically de-

fined as

m = lim
ρ→∞

log{R(ρ)}
log{ρ}

, (2.4)

where R(ρ)denotes the data rates at a given SNR value. There exists a funda-

mental tradeoff between the diversity gain and the multiplexing gain, which

is described in [5] from an information theoretic perspective.

Bit Error Rate (BER) is the performance metric employed in most chap-
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ters of this thesis. When the hardware imperfections in the following chap-

ters are considered, the Shannon capacity formula may not be valid, and

subsequently the BER becomes the most useful metric for physical layer tech-

niques. BER is defined as the ratio of the erroneous bits to the total number

of transmitted bits, given by

Pb =
Ne

Nb
, (2.5)

where Ne and Nb denotes the number of erroneous bits and total transmitted

bits, respectively. To decode the transmit signal vector x, an equaliser W ∈

CNr×Nt is required at the receiver to manage the inter-symbol interference.

Specifically, when we assume perfect CSI at the receiver side and the zero-

forcing (ZF) combining is employed, the equalisation matrix W is given by

W =
(
HHH

)−1HH , Nr ≥ Nt . (2.6)

For PSK modulations in Rayleigh fading channels that are introduced in

Chapter 2.3.1 and Chapter 2.3.2, the corresponding BER expression can be

obtained in an analytical form, expressed as

Pb =
Nt

∑
k=1

{
1
2
−
√

γk

π
·

Γ
(
Nr−Nt +

3
2

)
Γ(Nr−Nt +1)

×2F1

([
1
2
,Nr−Nt +

3
2

]
;
3
2

;−γk

)}
, (2.7)

where Γ(·) is the Gamma function, and 2F1 ([a,b] ;c;z) is the hypergeometric

function [29]. We denote the covariance matrix for the channel vector of

user k as ChT
k
. When ChT

k
for each user k is identical, we further introduce the

notation CH. γk can then be obtained based on the SNR per bit, a.k.a., Eb
N0

and

the covariance matrix CH, which is obtained as

γk =
1

log2 (N) ·σ2
[
C−1

H
]

k,k

(2.8)

for N-PSK. In (2.8),
[
C−1

H
]

k,k is the k-th diagonal entry in the inverse of the

covariance matrix CH as the covariance matrix. The detailed derivation for
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(2.7) can be found in [30], and [31] discusses the relationship between the ZF

and MMSE equalisers from an information theoretic perspective.

2.2 Downlink Transmission Methods

Compared to single-antenna systems, multiple-antenna systems require ad-

ditional signal processing techniques at the transmitter, receiver, or at both

sides. Dependent on which side the processing is employed at, the signal

processing can be divided into detection techniques at the receiver side and

precoding techniques at the transmitter side, respectively. In a multi-user

MIMO system, due to the separation in physical spaces, it is generally diffi-

cult to perform a joint processing (detection) of the data streams for different

users in the downlink. Therefore, receive combining methods are usually

employed in the uplink at the BS side, while precoding is preferred in the

downlink transmission. In addition, with the knowledge of the channel at

the BS, the use of precoding can transfer the signal processing process from

the user side to the BS to further alleviate the computational burden of the

users, which makes precoding a popular technique.

We move to consider a multi-user MIMO system, as depicted in Fig. 2.2,

where the BS with Nt transmit antennas communicates with a total number

of K single-antenna users (a MU-MISO system). In the considered scenario,

we decompose the channel matrix H into

H =
[
hT

1 ,h
T
2 , · · · ,hT

K
]T
, (2.9)

Figure 2.2: A block diagram of multi-user MIMO systems
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and each hk ∈ C1×Nt represents the channel vector from the BS to the k-th

user. The received signal for the k-th user can be expressed as

yk = hkx+nk, ∀k ∈ {1,2, · · · ,K} . (2.10)

For most of the precoding techniques, the received signal yk is ready for de-

modulation and no additional signal processing is required at the receiver

side.

As this thesis focuses on the designs of downlink transmission ap-

proaches, existing precoding methods are briefly reviewed in this section.

Generally, transmit processing schemes can be divided into closed-form

precoding approaches and optimisation-based precoding methods, where

closed-form precoding can be further classified into linear and non-linear

approaches. In general, linear precoding approaches aim to cancel the multi-

user interference based on the knowledge of the channel, which usually

require a relatively low computational cost [3]. The non-linear precoding

methods can achieve additional performance gains over linear approaches,

at the cost of increased computational burdens [17, 18, 34, 35, 36, 37, 38]. In

addition, popular optimisation-based downlink precoding methods are also

presented, including power minimisation [39], SINR balancing [40], and CI-

based optimisation [41].

2.2.1 Linear Precoding

Linear precoding represents a set of simple transmission approaches, where

the precoded signal vector x is a linear combination of the data symbols to

be transmitted. Mathematically, this is expressed as

x = Ps =
1
f
·Ws. (2.11)

In (2.11), P= 1
f ·W∈C

Nt×K is the precoding matrix, where f represents a scal-

ing factor to ensure that the power of the precoded signals x is constrained,
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given by1

f = ‖W‖F =
√

tr{WWH}, (2.12)

which is also known as the amplification factor. In the following we present

typical linear precoding methods, which have closed-form expressions and

are generally computationally efficient for multiple-antenna systems.

Matched Filtering (MF) is the simplest precoding method in the litera-

ture, which maximises the received SNR while ignoring the multi-user inter-

ference. The precoding matrix is formulated as the Hermitian of the channel

matrix H, given by [42]

PMF =
1

fMF
·HH =

HH√
tr{HHH}

. (2.13)

MF precoding can achieve a promising performance in noise-limited scenar-

ios (low SNR regimes or large-scale MIMO scenarios), while its performance

is significantly degraded in interference-limited scenarios.

Zero-Forcing (ZF) precoding is also a simple precoding method that has

been extensively studied [43, 44]. This precoding approach forces the multi-

user interference to be zero for each user by employing a Moore-Penrose

inverse of the wireless channel H, where the precoding matrix is given by

PZF =
1

fZF
·HH(HHH)−1

=
HH(HHH)−1√
tr
{
(HHH)−1

} , Nt ≥ K. (2.14)

ZF precoding is shown to achieve an improved performance over MF in the

high SNR regime.

Regularised Zero-Forcing (RZF) requires a similar computational cost

compared to ZF precoding, while achieves an improved performance over

ZF by introducing a regularisation factor to deal with ill-conditioned channel

1This is a short-term power constraint, and a long-term power constraint can also be
applied by expressing f = E

{√
tr{WWH}

}
. It is shown that the performance difference is

very small [33].
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matrices H [33]. The precoding matrix for RZF precoding is given by

PRZF =
1

fRZF
·HH(HHH +α · I

)−1
=

HH(HHH +α · I
)−1√

tr
{
(HHH +α · I)−1HHH(HHH +α · I)−1

} ,
(2.15)

where the optimal regularisation factor is α =Kσ2 for the considered system

[33].

2.2.2 Non-Linear Precoding

Compared to the linear precoding methods mentioned above, non-linear

precoding approaches usually require more sophisticated signal processing

techniques at the transmitter side, and may also incur additional processing

at the receiver side. For non-linear methods, the precoded signals are no

longer a linear combination of the data symbols. The most common non-

linear precoders in the existing literature are briefly included in the follow-

ing.

Dirty Paper Coding (DPC) is able to achieve the capacity of the MIMO

channel [45]. Nevertheless, the practical implementation of DPC is diffi-

cult, because the capacity-achieving DPC assumes an infinite length of code-

words and includes complicated sphere search algorithms.

Tomlinson-Harashima Precoding (THP) performs a successive sub-

traction of the known interference at the BS prior to data transmission [46].

THP can be viewed as an application of the Vertical-Bell Laboratories Lay-

ered Space-Time (V-BLAST) detection algorithm [47] at the transmitter side.

To be more specific, THP first performs a decomposition of the channel ma-

trix

H = LFH (2.16)

as the multiplication of a lower-triangle matrix L and a unitary matrix F. The

precoded signal vector for THP is then expressed as

xT HP = Fx̃T HP, (2.17)
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where x̃T HP is obtained based on the data symbols, given by

[x̃T HP]k = mod τ

{
sk−

k−1

∑
l=1

[B]k,l[x̃T HP]l

}
, ∀k ∈ {1,2, · · · ,K} . (2.18)

In (2.18), mod τ {x} represents a complex modulo function that is performed

for the real and imaginary part of x independently, given by

mod τ {x}=
(

ℜ(x)− τ ·
⌊

ℜ(x)+ τ/2
τ

⌋)
+ j
(

ℑ(x)− τ ·
⌊

ℑ(x)+ τ/2
τ

⌋)
,

(2.19)

where τ denotes the modulo basis and b·c is the floor function. The matrix

B represents the effective THP channel obtained as

B = GHF, (2.20)

where G is a diagonal matrix that represents a complex scaling at each re-

ceiver. For the THP approach, each diagonal entry in G is equal to the inverse

of the corresponding diagonal entry in L, i.e.,

gk = [G]k,k =
1

[L]k,k
. (2.21)

At each receiver, in addition to the scaling operation gk, a modulo operation

is also required before demodulation [47].

Vector Perturbation (VP) Precoding is the focus of Chapter 3 in this

thesis and is a modification of ZF precoding. Upon ZF, VP precoding further

performs a perturbation on the data symbols before transmission, such that

the resulting transmit signals are better aligned to the eigenvectors of the

channel inverse matrix, which leads to a significant decrease in the scaling

factor (a.k.a., noise amplification factor) of the precoder [17]. Accordingly,

VP achieves a significant gain in the error probability compared to ZF at

high SNR regimes. To be more specific, the transmit signal vector with VP
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precoding is formed as

xV P =
1

fV P
·HH(HHH)−1

(s+ τ · l) , (2.22)

where τ = 2|c|max +∆ is the modulation-dependent modulo basis. |c|max is

equal to the absolute value of the constellation points with the maximum

magnitude, and ∆ is the minimum distance between constellation points, re-

spectively. It is worth noting that the real part and imaginary part of the

constellation points should be considered separately in calculating τ [17].

For example, for a normalised Quadrature PSK (QPSK) modulation, τQPSK =

2×1+2√
2

= 2.8284, while for a normalised 16 Quadrature Amplitude Modula-

tion (16QAM), τ16QAM = 2×3+2√
10

= 2.5298. l ∈ CZK×1 denotes the complex-

integer perturbation vector, which is obtained by the sphere encoding [17],

given by

l = argmin
l∈CZK×1

∥∥∥HH(HHH)−1
(s+ τ · l)

∥∥∥2

F
. (2.23)

Based on (2.22), the scaling factor for VP is obtained as

fV P =

√
tr
{
(s+ τ · l)H(HHH)−1 (s+ τ · l)

}
. (2.24)

With VP precoding, the received signal for user k can be expressed as

yk =
1

fV P
·hkxV P +nk

=
1

fV P
(sk + τlk)+nk,

(2.25)

where l = [l1, l2, · · · , lK]T . In order to remove the perturbation factor τlk, a

modulo operation must be performed for each user after the received signal

is rescaled. Accordingly, the received signal of user k for demodulation can
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be expressed as
rk = mod τ { fV Pyk}

= mod τ {sk + τlk + fV Pnk}

= sk + fV Pn̂k,

(2.26)

where n̂k represents the effective noise that considers the modulo loss effect.

As the modulo basis τ is modulation dependent, the standard VP pre-

coding technique described above is only applicable to single-modulation

scenarios. Modified VP approaches are proposed in [18, 48] to circum-

vent this drawback, such that VP precoding can be applied to multiple-

modulation scenarios, where the data symbols are from different modula-

tion constellations. Nevertheless, both techniques proposed in [18, 48] can

only achieve a sub-optimal VP performance, which motivates our proposed

techniques that achieve an improved error probability, included in Chapter 3

of this thesis.

2.2.3 Optimisation-based Precoding Techniques

In addition to the introduced linear and non-linear precoding methods, in

the following we also briefly describe the precoding approaches, which are

based on optimisations on the received SINR. For such optimisation-based

precoding, the signal vector x is usually expressed as

x =
K

∑
i=1

wisi, (2.27)

where each wi denotes the precoding vector for the corresponding data sym-

bol si and unit power is assumed for each data symbol. Accordingly, (2.10)

can be further expressed as

yk = hk

K

∑
i=1

wisi +nk

= hkwksk +hk

K

∑
i6=k

wisi +nk,

(2.28)
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based on which we express the received SINR of the k-th user as

γk =
|hkwk|2

K
∑

i6=k
|hkwi|2 +σ2

. (2.29)

Power Minimisation is a popular optimisation-based precoding

method, where we minimise the required transmit power of the BS subject

to a predefined SINR target for each user. This leads to the mathematical

construction of the optimisation problem as

P2.1 : min
wi

K

∑
i=1
‖wi‖2

F

s.t.
|hkwk|2

K
∑

i6=k
|hkwi|2 +σ2

≥ Γk, ∀k ∈ {1,2, · · · ,K}
(2.30)

where each Γk denotes the SINR target of user k. P2.1 is a convex optimisa-

tion problem and can be efficiently solved as a virtual uplink power alloca-

tion problem or via semidefinite optimisation methods [39].

SINR Balancing precoding targets at maximising the minimum re-

ceived SINR for the users, subject to a predefined maximum available trans-

mit power. Mathematically, this problem is formulated as

P2.2 : max
wi

min
k

γk

s.t. γk =
|hkwk|2

K
∑

i 6=k
|hkwi|2 +σ2

, ∀k ∈ {1,2, · · · ,K}

K

∑
i=1
‖wi‖2

F ≤ P0

(2.31)

where P0 denotes the maximum transmit power available at the BS. Different

from P2.1, P2.2 is a non-convex optimisation. Fortunately, its optimal solu-

tion can be obtained either through a bisection search method described in

[40], or via an iterative algorithm explained in [49].
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2.2.4 Constructive Interference Precoding

The aforementioned precoding approaches operate at a frame level, i.e., the

precoding matrices are independent of the data symbols. Moreover, these

techniques are aimed at interference minimisation. In this section, we fur-

ther introduce a symbol-level data-dependent downlink precoding tech-

nique that further improves the performance, based on the fact that instanta-

neous interference can be beneficial and further exploited on a symbol level

[50, 51].

CI is defined as the interference that pushes the received signals away

from the detection thresholds of the modulation constellations. Pioneering

works in [52, 53] have shown that instantaneous interference can be classified

into constructive and destructive. A closed-form linear precoding method

that exploits the CI while eliminates the destructive part has been introduced

in [54], and a more advanced linear approach is proposed in [55], where

the phases of destructive interference are controlled and rotated such that

the destructive interference becomes constructive. Based on this phase ro-

tation concept, the interference exploitation is further extended to the areas

of optimisation-based precoding [41], where the constructive region is in-

troduced. To illustrate this intuitively, in Fig. 2.3 we depict the constructive

region for several modulation types, where the green areas denote the con-

structive region. θt is an introduced variable for the construction of the op-

timisation problem, which will be described in (2.36) in the following. As

can be observed, when the received signals fall within the constructive re-

gion, they are farther away from the detection thresholds, which promise an

improved detection performance. On the other hand, when located in the

destructive region, they are closer to the detection thresholds.

The Phase-Rotation Formulation: In the following, we construct the

precoding optimisation based on CI for both power minimisation and SINR

balancing. Without loss of generality, we consider a normalised QPSK con-

stellation and focus on the constellation point
(

1√
2
+ 1√

2
· j
)

, as shown in
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Figure 2.3: Examples of constructive region for different modulations

Fig. 2.4. Based on [41], for a CI-based power minimisation we denote

~OA =
√

Γkσ2 · sk, (2.32)

and we denote ~OB as the noiseless received signal for user k, which is ex-

pressed as
~OB = hkWs = λksk, (2.33)

where λk is an introduced complex variable that represents the effect of

multi-user interference on user k. If λk is purely real, it means that multi-

user interference is zero or strictly aligned to the data symbol of interest.

Geometrically, we can further obtain the expression of ~AC and ~BC, given by

~AC =
[
ℜ(λk)−

√
Γkσ2

]
sk, ~BC = j ·ℑ(λk)sk, (2.34)

where the imaginary unit j represents a phase rotation of 90o along an anti-

clockwise direction.

Subsequently, that the node ‘B’ is located in the constructive region is
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Figure 2.4: Constructive region, QPSK

equivalent to the following condition:

θAB ≤ θt ⇒ tanθAB ≤ tanθt

⇒ | j ·ℑ(λk)sk|∣∣∣[ℜ(λk)−
√

Γkσ2
]

sk

∣∣∣ ≤ tanθt

⇒
[
ℜ(λk)−

√
Γkσ2

]
tanθt ≥ |ℑ(λk)| ,

(2.35)

where θt denotes the angle threshold and is geometrically obtained as

θt =
π

N
(2.36)

for N-PSK modulations, shown in both Fig. 2.3 and Fig. 2.4. Accordingly,

we can formulate the power minimisation problem based on interference

exploitation as

P2.3 : min
W
‖Ws‖2

F

s.t. hkWs = λksk, ∀k ∈ {1,2, · · · ,K}[
ℜ(λk)−

√
Γkσ2

]
tanθt ≥ |ℑ(λk)| , ∀k ∈ {1,2, · · · ,K}

(2.37)

which is a convex optimisation. Following a similar step, the CI-based SINR
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balancing optimisation can be formulated as

P2.4 : max
W

min
k

Γk

s.t. hkWs = λksk, ∀k ∈ {1,2, · · · ,K}[
ℜ(λk)−

√
Γkσ2

]
tanθt ≥ |ℑ(λk)| , ∀k ∈ {1,2, · · · ,K}

‖Ws‖2
F ≤ P0

(2.38)

which can be further simplified into

P2.5 : max
W,t

t

s.t. hkWs = λksk, ∀k ∈ {1,2, · · · ,K}

[ℜ(λk)− t] tanθt ≥ |ℑ(λk)| , ∀k ∈ {1,2, · · · ,K}

‖Ws‖2
F ≤ P0

(2.39)

Geometrically, P2.5 is interpreted as an optimisation where we maximise the

distance between the constructive region and the detection thresholds such

that the received signals are pushed as far away as possible.

Different from generic SINR balancing optimisation that is non-convex,

CI-based SINR balancing optimisation is convex and can be efficiently

solved. In both P2.3 and P2.5, we further note a key difference compared

to the conventional frame-level precoding problems P2.1 and P2.2: the

symbol-level precoding matrix W is dependent on the data symbol vector

s, and therefore the transmit power should be expressed as ‖Ws‖2
F and op-

timised on a symbol level, which is different from P2.1 and P2.2 where an

average transmit power is maintained.

The Symbol-Scaling Formulation: The above CI formulations focus on

PSK modulations only, while the extension to QAM has been included in [50,

51]. Based on Fig. 2.3, the CI can only be exploited by the outer constellation

points for QAM modulations, while all the interference is destructive for the

inner constellation points. Accordingly, in the following we reformulate the
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Figure 2.5: Constructive region, 16QAM

CI constraints based on a symbol-scaling formulation, which is applicable

for QAM modulations. We decompose the noiseless received signal for user

k into

hkWs = λ
ℜ

k ℜ(sk)+ j ·λ ℜ

k ℑ(sk) , ∀k ∈ {1,2, · · · ,K} , (2.40)

where λ ℜ

k ≥ 0 and λ
ℑ

k ≥ 0 are real scaling factors for the real and imaginary

part of sk, respectively. By expanding the received signal vector with its real

and imaginary part, mathematically we obtain

 ℜ(HWs)

ℑ(HWs)

= ΦΦΦ

 ℜ(s)

ℑ(s)

 , (2.41)

where ΦΦΦ = diag
{[

λ ℜ
1 , · · · ,λ ℜ

K ,λ ℑ

1 , · · · ,λ ℑ

K

]}
represents a diagonal symbol-

scaling matrix. In the following, we employ a normalised 16QAM constel-

lation as an example, as shown in Fig. 2.5. A = 0.6324 denotes the detection

threshold for this constellation. Accordingly, we categorise the constellation

points for 16QAM into 4 types:

• Yellow: ℜ(sk)≥ A and ℑ(sk)≥ A. This case is similar to the CI formu-
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lation for PSK modulations, and we obtain λ ℜ

k ≥ 0 and λ
ℑ

k ≥ 0;

• Red: ℜ(sk)≤ A and ℑ(sk)≥ A. In this case, the interference can only be

exploited for the imaginary part, and we obtain λ ℜ

k = 1 and λ
ℑ

k ≥ 0;

• Green: ℜ(sk)≥ A and ℑ(sk)≤ A. In this case, CI can only be exploited

for the real part, and we obtain λ ℜ

k ≥ 0 and λ
ℑ

k = 1;

• Blue: ℜ(sk) ≤ A and ℑ(sk) ≤ A. All interference is destructive in this

case, and we obtain λ ℜ

k = 1 and λ
ℑ

k = 1.

By incorporating the above CI constraints, the optimisation problem aimed

at power minimisation or SINR balancing for QAM modulations can be sim-

ilarly constructed, and is omitted for brevity.

In 2.1, we summarise the key differences for the precoding techniques

introduced in this section.

2.3 Channel Modelling
It can be seen in Chapter 2.2 that the knowledge of the channel is essential

for all precoding techniques, and therefore the channel modelling is crucial

in the analyses of the precoding techniques. In this section, we briefly intro-

duce the channel models that are relevant to the contributions of this thesis,

where throughout this thesis we consider the non-line-of-sight (NLoS) prop-

Linear Precoding
Name Closed-form Expression Complexity Performance
MF PMF = 1

fMF
·HH Simplest Lowest

ZF PZF = 1
fZF
·HH(HHH)−1 Higher than MF Better than MF

RZF PRZF = 1
fRZF
·HH(HHH +α · I

)−1 Similar to ZF Better than ZF
Non-linear Precoding

Name Expression Complexity Processing at Receiver?
THP (2.16) - (2.21) Higher than linear Yes
VP (2.22) - (2.24) Higher than linear Yes

Optimisation-based Precoding
Optimisation Target Problem Formulation Convexity? Solution
Power Minimisation P2.1 Yes Standard

SINR Balancing P2.2 No Bisection search
Interference Exploitation P2.3, P2.4 Yes Standard

Table 2.1: Classification of transmit processing techniques in the downlink
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agation channels with flat fading, unless otherwise stated.

2.3.1 Uncorrelated Rayleigh Channel

The uncorrelated Rayleigh channel is the most common and widely adopted

channel model. This model assumes the existence of large-scale statistically

independent reflectors and scatters in the wireless environment, based on

which each path of the channel tap can be modelled as a complex random

variable. Subsequently, each channel tap is the summation of many indepen-

dent complex random variables, which therefore follows a complex Gaus-

sian distribution according to the Central Limit Theorem [3]. Without loss

of generality, each channel coefficient can be modelled as

[H]m,n ∼ CN(0,1). (2.42)

Based on the above modelling, the magnitude of each channel tap follows a

Rayleigh distribution, which names this channel model.

2.3.2 Correlated Rayleigh Channel

The above uncorrelated channel model assumes that the channels between

different antennas are statistically independent and ignores the spatial cor-

relation effect at the antenna array. In fact for a practical antenna array, the

channels between adjacent antennas are correlated, especially when the an-

tenna spacing is small compared to the carrier wavelength [56, 57].

Separately-Correlated Rayleigh Channel: When a P2P MIMO model

is considered, there exists spatial correlation at both the transmitter and re-

ceiver. Following [58, 59, 60], we model the channel H as

H = ArHαAH
t . (2.43)
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In (2.43), Hα is a diagonal matrix with complex Gaussian distributed entries

that model the Rayleigh components of the channel, given by

Hα =
1√
Np
·diag

(
α1,α2, ...,αNp

)
, (2.44)

where Np is the number of independent paths (scattering) in the wireless

environment, and each αm ∼ CN(0,1), m ∈
{

1,2, · · · ,Np
}

. Ar ∈ CNr×Np and

At ∈ CNt×Np denote the receive-side and transmit-side steering matrices that

contain Np steering vectors of the antenna array to model the spatial corre-

lation effect. Ar and At can be decomposed into

Ar =
[
ar (φ

r
1) ,ar (φ

r
2) , · · · ,ar

(
φ

r
Np

)]
,

At =
[
at
(
φ

t
1
)
,at
(
φ

t
2
)
, · · · ,at

(
φ

t
Np

)]
,

(2.45)

where for uniform linear arrays (ULAs), ar (φ
r
m) ∈ CNr×1 and at (φ

t
m) ∈ CNt×1

can be expressed as [60]

ar (φ
r
m) =

[
1,e j2πdr sinφ r

m , · · · ,e j2π(Nr−1)dr sinφ r
m

]T
, m ∈

{
1,2, · · · ,Np

}
,

at
(
φ

t
m
)
=
[
1,e j2πdt sinφ t

m, · · · ,e j2π(Nt−1)dt sinφ t
m

]T
, m ∈

{
1,2, · · · ,Np

}
.

(2.46)

In (2.46), φ r
m and φ t

m, m ∈
{

1,2, · · · ,Np
}

denote the angles of arrival (AoAs)

and angles of departure (AoDs) respectively, and both φ r
m and φ t

m follow a

Laplacian distribution [60]. dr and dt denote the equidistant spacing between

adjacent antennas for the receive and transmit antenna array respectively,

which is normalised by the carrier wavelength.

Semi-Correlated Rayleigh Channel: When a multi-user MIMO system

is considered, it is reasonable that the considered channel is semi-correlated,

where the spatial correlation only exists at the transmit side. In such case,

each channel vector for the users is modelled as [61, 62]

hk = gkAk, ∀k ∈ {1,2, · · · ,K} , (2.47)
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where gk ∈ C1×Ns and each entry of gk follows the standard complex Gaus-

sian distribution, which models the Rayleigh components. Each Ak ∈CNs×Nt

contains Ns steering vectors that model the transmit correlation, where Ns

denotes the number of directions of departure (DoDs). For ULAs, each Ak

can be modelled as

Ak =
1√
Ns
·
[
aT (

θk,1
)
,aT (

θk,2
)
, · · · ,aT (

θk,Ns

)]T
, ∀k ∈ {1,2, · · · ,K} , (2.48)

where each aT (θk,i
)
∈ C1×Nt is given by

a
(
θk,i
)
=
[
1,e j2πd sinθk,i, · · · ,e j2π(Nt−1)d sinθk,i

]
. (2.49)

In (2.49), d denotes the equidistant antenna spacing normalised by the car-

rier wavelength. Following the modelling for separately-correlated chan-

nels, each θk,i is assumed to follow a Laplacian distribution [60].

Mutual Coupling Effect: MC defines the electromagnetic interaction

between the antenna elements in an antenna array [63]. When the spacing

between adjacent antenna elements becomes smaller, the spatial correlation

is not the only effect that has an impact on the performance of multiple-

antenna systems. The coupling effect also arises as a key factor on which

the system performance is dependent, based on the fact that the current on

an antenna element is jointly decided by its own excitation as well as the

contributions from other nearby antenna elements. In a multiple-antenna

communication system, it has been shown in [61, 62, 64] that the MC effect

can be fully characterised by a MC matrix Z that is multiplied to the channel

matrix, whose formulation is derived in Appendix A.

2.3.3 Millimeter-Wave Channel
In addition to the above channel models, we also present the mmWave chan-

nel model in this section. Compared to aforementioned channels, mmWave

channels are expected to have limited scattering [65, 66]. To take this effect

into consideration, a geometric channel model with Lu independent propa-
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gation paths is considered for each Hk, modelled as [67]

Hk =

√
NtNk

r
Lu

Lu

∑
l=1

αk,l ·aMS

(
θ

MS
k,l ,φ

MS
k,l

)
aH

BS

(
θ

BS
k,l ,φ

BS
k,l

)
, (2.50)

where the value of Lu is small compared to Nt for limited scattering. αk,l

is the complex path gain, where αk,l represents a deterministic complex

channel gain for the LoS components, while αk,l follows the standard com-

plex Gaussian distribution for the NLoS components. aMS

(
θ MS

k,l ,φ
MS
k,l

)
and

aH
BS

(
θ BS

k,l ,φ
BS
k,l

)
denote the receive and transmit array response vectors respec-

tively, where θ MS
k,l (φ MS

k,l ) and θ BS
k,l (φ BS

k,l ) denote the azimuth (elevation) angles

of arrival and departure (AoAs/AoDs) of the l-th path. For uniform linear

arrays (ULAs), only the azimuth AoAs and AoDs are considered, and we

can express the array response as

aULA (θ) =
1√
Nt

[
1,e j·kd sin(θ), · · · ,e j·(Nt−1)kd sin(θ)

]T
, (2.51)

where k = 2π

λ
with λ being the carrier wavelength, and d is the physical inter-

antenna spacing. When uniform planar arrays (UPAs) are considered, the

array response vector can be expressed as

aUPA (θ ,φ) =
1√
Ntot

[
1, · · · ,e j·kd[msin(φ)sin(θ)+ncos(θ)],

· · · ,e j·kd[(W−1)sin(φ)sin(θ)+(H−1)cos(θ)]
]T

,

(2.52)

where 0 ≤ m ≤W − 1, 0 ≤ n ≤ H − 1, and Ntot = WH. Ntot = Nt for aBS and

Ntot = Nk
r for aMS of Hk.

2.3.4 Modelling of Imperfect CSI

It is observed in Chapter 2.3 that downlink precoding techniques require

the knowledge of the channel at the BS. In practical cellular communication

systems, the perfect acquisition of the channel knowledge is difficult, and it

is essential to consider the performance of downlink transmission methods
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under imperfect CSI. Depending on the duplex mode, we present the models

of imperfect CSI employed in the following chapters of this thesis.

Statistical CSI Error Model: In the time division duplex (TDD) mode,

the uplink and downlink channels operate in the same frequency bands,

and therefore the downlink channel can be directly measured by the uplink-

downlink reciprocity at the BS, which is subject to estimation errors at the

BS [68]. When the channel estimation technique based on minimum mean

squared error (MMSE) is employed, as described in [69, 70], the imperfect

channel model is expressed as

H = α ·
(
Ĥ+E

)
+Q, (2.53)

where H represents the real wireless propagation channel, and Ĥ is the esti-

mated channel at the BS. α denotes a correlation factor that models the time

delay in estimating the channel. α = 1 if the channel that the precoded sig-

nals experience is identical to the estimated channel based on which the sig-

nals are precoded. Q denotes the corresponding delay error matrix, where

each entry in Q is independent and distributed as CN
(
0,1−α2). E repre-

sents the estimation error matrix with E∼ CN(0,η · I), and η is given by

η =
β

ρ
, (2.54)

where ρ denotes the transmit SNR and β is the inverse proportionality coef-

ficient. When α = 1, we arrive at a simplified imperfect CSI model for TDD

systems as

H = Ĥ+E, (2.55)

which is employed in Chapter 6. The perfect CSI case is equivalent to α = 1

and β = 0.

Norm-Bounded CSI Error Model: In frequency division duplex (FDD)

mode, as the downlink channel and uplink channel are operating in different

frequency bands, the uplink-downlink reciprocity does not hold. In practi-
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cal systems, the channel knowledge is first estimated at the receivers, and

then fedback to the BS [68]. Accordingly, the CSI errors for FDD systems

are dominated by the quantisation errors in the limited feedback, based on

which the imperfect CSI model can be constructed as

hk = ĥk + ek, ∀k ∈ {1,2, · · · ,K} , (2.56)

where for each user k, due to the quantisation the channel uncertainty is

bounded by a spherical region, expressed as

Dk :=
{

ĥk + ek | ‖ek‖F ≤
√

δk

}
, ∀k ∈ {1,2, · · · ,K} . (2.57)

2.4 Hybrid Multiple-Antenna Structures

The precoding techniques introduced in Chapter 2.3 require a FD structure

at the BS, i.e., both the phases and the amplitudes of the precoding matrices

can be controlled and tuned arbitrarily [47]. Nevertheless, such FD systems

may not be practical in the future 5G-and-beyond communication systems,

which target at energy efficient transmissions. This is because the FD sys-

tems require the number of RF chains to be equal to the number of transmit

antennas, which incur a significant increase in the power consumption, hard-

ware complexity and hardware cost at the BS, especially for the large-scale

multiple-antenna systems. Towards the future energy efficient communica-

tion systems, alternative hybrid BS structures have been considered, mainly

realised by employing a limited number of RF chains.

In the following, we introduce two typical hybrid BS structures with a

reduced number of RF chains, both of which are studied within this thesis.

These hybrid structures either respect the existence of the MC effect for com-

pact antenna arrays [8], or employ an analog processing network of phase

shifters for reduced hardware complexity [23].
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(a) Single-fed ESPAR (b) Multi-fed ESPAR

Figure 2.6: Example of a single-fed and multi-fed parasitic-antenna BS

2.4.1 Compact Parasitic-Antenna Systems

When a compact antenna array is considered, i.e., the equidistant antenna

spacing is small, the strong MC effect usually has a negative effect on the

system performance [63, 71, 72, 73]. Subsequently, extensive studies have

been conducted to compensate for the performance losses due to the cou-

pling effect [7, 20, 74, 75, 76, 77].

In addition, a novel parasitic-antenna array known as ESPAR has been

proposed in [8, 14, 15], where the ESPAR-based arrays consist of limited ac-

tive antenna elements with their own fixed antenna loads and RF chains,

surrounded by parasitic elements with tunable antenna loads, which are ex-

cited passively. In Fig. 2.6, we present both a single-fed and multi-fed ES-

PAR-based BS structure, where it is observed that the number of RF chains

is equal to that of active elements. Accordingly, the required number of RF

chains is significantly reduced, which makes the parasitic-antenna arrays

a space- and energy-efficient alternative to generic antenna array architec-

tures.

Moreover, as opposed to the conventional multiple-antenna arrays

where the small antenna spacing and the resulting coupling effect are detri-
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(a) Conventional Antenna Array (b) Parasitic Antenna Array

Figure 2.7: Circuit representation of the conventional and parasitic antenna array

mental, the small size constraint turns to be an advantage for ESPAR-based

MIMO systems. In particular, the parasitic arrays exploit the MC effect

instead of compensating for this effect, where the desired radiation pat-

terns are formed by controlling the voltages on the active elements and

the loads on the parasitic elements. To be specific, we first introduce the

signal model for the conventional antenna array, and further extend to the

parasitic-antenna array.

Conventional Antenna Array: The circuit representation of a conven-

tional FD antenna array is shown in Fig. 2.7 (a). In this case, each antenna

element k is fed by an independent source with the complex voltage vk, and

the fixed output impedance is denoted as z0. The constant mutual impedance

matrix for the conventional array is denoted as Z0
m ∈CNt×Nt , which is related

to both the carrier frequency and the antenna spacing. According to the

generalised Ohm’s law, the complex current vector at the antenna port can

be expressed as [78]

i0 =
[
diag(z0)+Z0

m
]−1v0, (2.58)

where i0 ∈ CNt×1 is the current vector, z0 = z0 · 1 ∈ CNt×1 is the fixed output

impedance vector, and v0 ∈ CNt×1 denotes the voltage vector. For a generic

FD MIMO array, z0 usually equals 50Ω, and the desired signal vector is gen-

erated by adjusting the voltage vector v0.

Parasitic Antenna Array: The equivalent circuit representation of a par-
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asitic array is shown in Fig. 2.7 (b). Without loss of generality, we assume that

the total number of active antennas is N (which is equivalent to the number

of RF chains), while the remaining (Nt−N) elements are parasitic and ex-

cited passively by the MC effect between antenna elements. In this case, the

current vector at the antenna port can be obtained based on (2.58) as [79]

i = [diag(zL)+Zm]
−1 · [v1, · · · ,vN ,0, · · · ,0]T

= [diag(zL)+Zm]
−1vs

= Z−1
T vs,

(2.59)

where we denote ZT = [diag(zL)+Zm] as the effective coupling matrix. The

antenna load vector zL is expressed as

zL = [z1,z2, · · ·zNt ]
T , zn = z0, ∀n ∈ {1,2, · · · ,N} . (2.60)

z0 denotes the fixed load impedance that corresponds to the active antenna

element, and each zi, ∀i ∈ {N +1,N +2, · · · ,Nt} denotes the tunable antenna

load for each parasitic element. As observed from (2.59), different from the

conventional antenna array where the transmit signals are solely controlled

by the feeding voltages, the current vector for ESPARs is jointly decided by

the voltages on the active antennas and the tunable loads on the parasitic

antenna elements. By expanding (2.59), we obtain


[Zm]1,1 + z1 [Zm]1,2 · · · [Zm]1,Nt

[Zm]2,1 [Zm]2,2 + z2
. . . [Zm]2,Nt

... . . . . . . ...

[Zm]Nt ,1 [Zm]Nt ,2 · · · [Zm]Nt ,Nt
+ zNt




i1

i2
...

iNt

=


v1
...

vN

0(Nt−N)×1

 ,
(2.61)

based on which we can calculate the feeding voltage and the values of the

tunable antenna loads as a function of the desired current vector, given by
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Figure 2.8: A generic hybrid AD BS structure

[8, 78]

vn =
Nt

∑
k=1

[Zm]n,kik + z0in, ∀n ∈ {1,2, · · · ,N} ,

zm =− 1
im

Nt

∑
k=1

[Zm]m,kik, ∀m ∈ {N +1,N +2, · · · ,Nt} .
(2.62)

The precoding design for parasitic-antenna arrays will be studied in

Chapter 6.

2.4.2 Hybrid Analog-Digital Structures

In addition to the parasitic-antenna arrays, we introduce another popular

hybrid structure, which is initially designed for large-scale mmWave com-

munications to alleviate the hardware cost [11, 23]. As depicted in Fig. 2.8,

the BS employs a reduced number of Nt
RF RF chains compared to the total

number of Nt transmit antennas. Accordingly, the downlink processing has

been divided into the analog domain and the digital domain, where the pre-

coding F consists of two parts: the high-dimensional analog precoding FRF ,

and the low-dimensional digital precoding FBB, expressed as

F = FRFFBB, (2.63)

where FRF ∈ CNt×Nt
RF and FBB ∈ CNt

RF×K .

In the analog domain, the use of an analog network of phase shifters is

the most popular one [11, 23, 24, 67, 80], which enforces a constant modulus

constraint on the entries of the analog precoder. In addition, analog pre-

coding based on switches is also a potential way to implement the analog
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(a) Fully-Connected (b) Partially-Connected

Figure 2.9: Transmit Antenna Array Structure for Hybrid AD Precoding

processing [81]. Recently, another hybrid precoding based on lens antenna

arrays has further been introduced as a cost-effective solution to large-scale

multiple-antenna systems [82, 83]. In the digital domain, a low-dimensional

conventional FD precoder is employed to manage the multiuser interference.

In this thesis, we focus on the hybrid design where the analog precod-

ing is implemented via phase shifters. Two typical analog precoding struc-

tures, i.e., fully-connected and partially-connected structures are considered,

as depicted in Fig. 2.9. When a fully-connected analog structure is consid-

ered, as shown in Fig. 2.9 (a), FRF can be expressed as

FRF =
[
f f
1 , f

f
2 , · · · , f

f
K

]
, (2.64)

which is a full matrix with all elements being non-zero and normalised to

satisfy ∣∣∣[f f
k

]
m

∣∣∣= 1√
Nt

, ∀k ∈ {1,2, · · · ,K} , ∀m ∈ {1,2, · · · ,Nt} . (2.65)

For partially-connected structures, as shown in Fig. 2.9 (b), FRF can be de-

composed into

FRF = diag
{[

fp
1 , f

p
2 , · · · , f

p
K
]}

, (2.66)

which is a block-diagonal matrix with each fp
k ∈C

Mp×1, where Mp is the num-

ber of antennas connected to each RF chain. Each entry in fp
k is normalised
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to satisfy

∣∣[fp
k

]
m

∣∣= 1√
Mp

, ∀k ∈ {1,2, · · · ,K} , ∀m ∈
{

1,2, · · · ,Mp
}
. (2.67)

The specific design of hybrid precoding and its extension to energy efficient

MIMO SWIPT are discussed in Chapter 7.
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Chapter 3

VP Precoding for

Multiple-Modulation Scenarios

This chapter is based on our works published in [J7], [J8].

3.1 Joint Vector Perturbation

3.1.1 Introduction

In this chapter, we focus on the study of non-linear VP techniques. Com-

pared to linear precoding approaches, the non-linear VP precoding can

achieve a greatly improved BER performance, and has received extensive

research attention [17, 18, 48]. Nevertheless, as mentioned in Chapter 2 that

the modulo basis τ is modulation dependent, one main drawback of the con-

ventional VP method in [17] is its inapplicability in multiple-modulation sce-

narios where different users employ different modulation types.

To overcome this drawback, in [48] the conventional VP precoding pro-

posed in [17] is combined with the block diagonalisation (BD) scheme de-

signed for multiuser MIMO (MU-MIMO) systems, and a block-diagonalised

VP (BDVP) approach is proposed, where the sphere search is performed

for each user independently to obtain the perturbation vectors. A low-

complexity BDVP approach is introduced in [18], where a user grouping

VP (UGVP) precoding is further proposed to improve the performance of

BDVP. For UGVP, the sphere search is performed for each modulation inde-
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pendently instead of each user. While both BDVP and UGVP enable the em-

ployment of VP approaches in multiple-modulation scenarios, the above two

methods can only achieve sub-optimal performances, as the sphere search

algorithm is not jointly conducted for all the data streams.

In order to retain the performance advantages of the conventional VP

precoding for single modulation, in this section we propose a JVP precod-

ing technique that achieves a comparable performance to the conventional

VP approach, which is applicable to multiple-modulation scenarios. With

the introduced constellation scaling approach, different modulation types

can employ an identical modulo basis, and therefore the sphere search for

the perturbation vectors can be jointly obtained as in the conventional VP for-

mulation. In addition to the performance superiority, another advantage of

the proposed technique is that it forms a basis for other VP-based techniques

to be applicable in multiple-modulation cases. For example, complexity-

reduction methods proposed in [35, 86] can be applied upon the proposed

JVP precoding to achieve further complexity benefits.

3.1.2 System Model

We begin with the description of the system model, followed by a brief in-

troduction of the existing BDVP and UGVP approaches.

3.1.2.1 MU-MIMO System Model

We consider a MU-MIMO downlink system, where a BS with Nt trans-

mit antennas is communicating with K users simultaneously. Each user k

is equipped with nr
k ≥ 1 receive antennas, and we assume the number of

streams for user k is equal to nr
k. The total number of receive antennas is

obtained as Nr =
K
∑

k=1
nr

k and Nr ≤ Nt . We consider an uncorrelated Rayleigh

flat-fading channel as introduced in Chapter 2.3.1, where the channel matrix

for user k is denoted as Hk ∈ Cnr
k×Nt , and the channel matrix between the BS

and all users can be expressed in a compact form as H =
[
HT

1 ,H
T
2 , ...,H

T
K
]T .
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Accordingly, the received signal vector for user k can be expressed as

yk = HkFkxk +Hk

K

∑
i=1,i 6=k

Fixi +nk, (3.1)

where xk is the perturbed signal vector for user k, and nk is the additive com-

plex Gaussian noise vector at user k with zero mean and covariance σ2 · I. In

(3.1), Fk is the precoding matrix for user k.

In multiple-modulation scenarios, the conventional VP approach is not

directly applicable, as the search for the perturbation vectors for different

modulation types cannot be jointly performed, which is due to the different

values of the modulo basis τ . In the following, we briefly review two existing

VP-based approaches for multiple-modulation scenarios.

3.1.2.2 BDVP Precoding

For BDVP introduced in [48], the precoding matrix Fk in (3.1) for the k-th

user can be expressed as Fk = BkDk, where Bk is the matrix used to eliminate

the inter-user interference, which satisfies

HiBk = 0, ∀i 6= k. (3.2)

Bk can be obtained from the SVD of H̃k as

H̃k = Ũk∆̃∆∆k[Ṽ
(1)
k , Ṽ(0)

k ]H , (3.3)

where H̃k = [HT
1 , ...,H

T
k−1,H

T
k+1, ...,H

T
K]

T . Subsequently, Bk is chosen as

Bk = Ṽ(0)
k , (3.4)

as Ṽ(0)
k forms the orthogonal basis of the null space of H̃k. After Bk is ob-

tained, the equivalent channel for user k is a non-interfering channel, which

is expressed as

Heq
k = HkBk. (3.5)
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Accordingly, Dk is obtained based on ZF as

Dk = (HkBk)
−1. (3.6)

After the precoding matrix Dk is obtained, the perturbation vector for user k

can be calculated according to

lk = argmin
lk∈CZ

nr
k×1

∥∥∥(HkBk)
−1 (sk + τklk)

∥∥∥2

F
. (3.7)

For the low-complexity BDVP method proposed in [18], the precoding ma-

trix for user k is Fk = Ĥk, where Ĥk is obtained from the decomposition of

the channel’s pseudo inverse H†, given by

H† =
[
Ĥ1,Ĥ2, · · · ,ĤK

]
, (3.8)

with each Ĥk ∈CNt×nr
k . The transmit signal vector for user k is then expressed

as

xk =
1

fV P
· Ĥk (sk + τklk) , (3.9)

where a unit transmit power is assumed. lk is the perturbation vector for

user k and we obtain lk following

lk = argmin
lk∈CZ

nr
k×1

∥∥Ĥk (sk + τklk)
∥∥2

F . (3.10)

In (3.9), fV P is the transmit scaling factor that ensures E
{
‖x‖2

F

}
= 1, given

by

fV P =
∥∥∥H† (s+ τl)

∥∥∥
F
, (3.11)

where l =
[
lT1 , l

T
2 , · · · , lTK

]T . At the receiver side, the signal vector is firstly

rescaled to eliminate the effect of fV P, and then fed to a modulo operation to

remove the perturbation vector lk for each user, as shown in Chapter 2.2.2.
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3.1.2.3 UGVP Precoding

For UGVP precoding, the difference compared to BDVP is that UGVP di-

vides the total K users into groups, such that the modulation type within

each group is identical. With this approach, the sphere search for the pertur-

bation vectors can be performed independently for each group. We denote

B as the total number of groups which is equal to the number of modulation

types employed by the total K users, and denote {G1,G2, ...,GB} as the set of

groups. For each group Gb, we have τb
k = τb, ∀k ∈ Gb, and the perturbation

vector for the group Gb is given by

lb = argmin
lb∈CZnb×1

∥∥Ĥb (sb + τblb)
∥∥2

F , (3.12)

where H† is divided by groups into H† =
[
Ĥ1,Ĥ2, ...,ĤB

]
for UGVP. Ĥb ∈

CNt×nb is the precoding matrix for the users within the group Gb, sb =[
sT

1 ,s
T
2 , ...,s

T
bM

]T
, nb =

bM
∑

k=b1

nr
k is the total number of transmit symbols in group

b, and bM is the total number of users in group b, which leads to Nr =
B
∑

b=1
nb.

By reducing the number of individual sphere searches required, UGVP is

shown to achieve an improved performance over BDVP [18].

3.1.3 Proposed Joint VP Precoding

Single-modulation VP approaches search over the entire Nr dimensions to

obtain the perturbation vector that minimises the transmit signal norm

[17]. Nevertheless, due to the different values of τ for different modulation

types, conventional VP techniques cannot be directly employed in multiple-

modulation scenarios. For BDVP, the sphere search is performed within

nr
k dimensions for each user k and a total number of K independent sphere

searches are conducted to obtain the perturbation vectors. Similarly, UGVP

performs an nb-dimensional sphere search for B modulation types to ob-

tain the desired perturbation vectors. By rewriting H† =
[
Ĥ1,Ĥ2, ...,ĤK

]
and
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defining a diagonal matrix τττ = diag{τ1 ·1,τ2 ·1, · · · ,τk ·1}, we obtain

∥∥∥H† (s+ τττl)
∥∥∥2

F
=

∥∥∥∥∥ K

∑
k=1

Ĥk (sk + τklk)

∥∥∥∥∥
2

F

≤
K

∑
k=1

∥∥Ĥk (sk + τklk)
∥∥2

F .

(3.13)

It is found that with the increase in the value of K, the gap between∥∥H† (s+ τττl)
∥∥2

F and
K
∑

k=1

∥∥Ĥk (sk + τklk)
∥∥2

F is larger [18]. Therefore, while UGVP

performs better than BDVP, they are both sub-optimal as each sphere search

is conducted in a reduced dimension.

In this section, we propose a joint perturbation technique via a constel-

lation scaling approach, which searches the perturbation vectors in a full

dimension. To be specific, without loss of generality we assume that multi-

ple modulation types are applied, and each modulation is denoted as A , B,

C ,...,N . We denote Ni as the number of symbols that is from the constella-

tion of the modulation type i, and we obtain
N
∑

i=A
Ni = Nr. We first rewrite

H† = [HA , · · · ,HN ], s+ τττl = [(sA + τA lA )T , · · · ,(sN + τN lN )T ]T , (3.14)

where si denotes the symbol vector from the constellation of modulation i

and Hi is the corresponding channel matrix. Based on (3.14), the transmit

signal norm can be reformulated as

∥∥∥H† (s+ τττl)
∥∥∥2

F
= ‖[HA , · · · ,HN ] · (s+ τττl)‖2

F

=

∥∥∥∥∥ N

∑
i=A

τi

τ0
· τ0

τi
Hi(si + τili)

∥∥∥∥∥
2

F

=

∥∥∥∥∥ N

∑
i=A

τi

τ0
Hi(

τ0

τi
si + τ0li)

∥∥∥∥∥
2

F

,

(3.15)

where li is the perturbation vector for modulation type i. τ0 denotes the mod-

ulo basis that is employed in the sphere search. For our proposed approach,
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it is easy to observe that τ0 can be an arbitrary positive value. By defining

G=

[
τA

τ0
HA , · · · ,τN

τ0
HN

]
, t =

[
τ0

τA
sT
A , · · · , τ0

τN
sT
N

]T

, (3.16)

(3.15) can be further transformed into

∥∥∥H† (s+ τττl)
∥∥∥2

F
= ‖G(t+ τ0l)‖2

F , (3.17)

which is in a standard form of the conventional single-modulation VP pre-

coding as in [17].
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Figure 3.1: Normalised constellation points for QPSK, scaled QPSK and 16QAM

With the above transformation, different modulations share an identi-

cal modulo basis τ0, and the sphere search can be conducted jointly as for

conventional VP. Accordingly, no performance losses will be observed com-

pared to the conventional VP for single modulation. The proposed method

can also be interpreted as follows: by scaling each constellation of different

modulations and the corresponding channel matrices, the modulo basis τ for

each modulation is made identical, and therefore the search for the perturba-

tion vector can be performed jointly. To illustrate how the proposed scheme

works, Fig. 3.1 depicts the normalised constellation points of 16QAM, QPSK,
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and QPSK after the proposed constellation scaling approach (denoted as

sQPSK). According to the definition of τ [17], in Fig. 3.1 we can obtain the

values of the modulo basis τ16QAM = 2.5298 for 16QAM and τQPSK = 2.8284

for QPSK respectively, shown before (2.23) in Chapter 2.2.2. We scale the

constellation of QPSK by τ16QAM
/

τQPSK such that

τ16QAM

τsQPSK
=

d16QAM
1 +d16QAM

2

dsQPSK
1 +dsQPSK

2

= 1, (3.18)

i.e., the value of the modulo basis for the scaled QPSK is equal to that of

16QAM. With the above constellation scaling, τ0 = τ16QAM and the joint per-

turbation can be performed.

3.1.4 Computational Cost Analysis

In this section, we compare the computational cost of the proposed method

with BDVP and UGVP in terms of the floating-point operations required [87,

88]. The inversion of the nk×nk matrix Dk and Nr×Nt matrix H using Gauss-

Jordan elimination requires 4n3
k/3 and 4N3

t /3 operations, respectively. An n-

dimension sphere search requires O{n6} operations [88], where O{·} defines

the order of numerical operators. In addition, the calculation of G and t

involved in the JVP precoding requires O {Nt} operations. This additional

computational cost contributes little to the total complexity, compared to that

of the sphere search. Accordingly, the proposed algorithm almost consumes

the same complexity as the conventional VP approach, which will be further

shown numerically. Subsequently, the computational cost for each VP-based

methods can be calculated as

CBDVP = O{4N3
t /3}+

K

∑
k=1

O{n6
k}= O

{
4N3

t /3+
K

∑
k=1

n6
k

}
,

CUGVP = O{4N3
t /3}+

B

∑
b=1

O{n6
b}= O

{
4N3

t /3+
B

∑
b=1

n6
b

}
,

CJVP = O{4N3
t /3}+O{N6

t }+O{2Nt}= O
{

4N3
t /3+N6

t +2Nt

}
.

(3.19)



3.1. Joint Vector Perturbation 77

0 5 10 15 20 25 30

ρ (dB)

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

VP QPSK

VP 16QAM

VP 8PSK

BD-VP QPSK

BD-VP 16QAM

BD-VP 8PSK

UG-VP QPSK

UG-VP 16QAM

UG-VP 8PSK

JVP QPSK

JVP 16QAM

JVP 8PSK

Figure 3.2: BER v.s. transmit SNR ρ , Nt = 12, K=6, nr
k = 2, ∀k

3.1.5 Numerical Results
In this section, the performance of the proposed JVP is compared to existing

the BDVP and UGVP methods by Monte Carlo simulations. The transmit

SNR is defined as ρ = 1
/

σ2, and we assume the number of transmit antenna

Nt = 12, the total number of users K = 6, and nr
k = 2 for each user. In the ex-

istence of multiple modulations, QPSK, 8PSK, and 16QAM modulations are

employed as examples, with 2 users for each modulation. The above param-

eters remain constant throughout the simulations, unless otherwise stated.

We note that our interest lies in the multiple-modulation scenarios, and ac-

cordingly our performance comparison is the proposed ‘JVP’ approach with

the existing ‘BDVP’ and ‘UGVP’, while the performance of the conventional

VP for single modulation is only presented as reference.

In Fig. 3.2, the BER performance of the proposed JVP is compared with

existing BDVP, UGVP and conventional single-modulation VP with respect

to the increasing transmit SNR. It can be observed that the proposed JVP

achieves a significant performance gain over both the BDVP and UGVP pre-

coding, where a comparable performance to the conventional VP approach

for each modulation is achieved. It is worth noting that the performance

of PSK modulations in JVP precoding achieves an even better performance
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Figure 3.3: Average BER v.s. transmit SNR ρ , Nt=12, K=6, nr
k = 2, ∀k

than in the conventional VP approach, as the proposed JVP approach ob-

tains a smaller scaling factor fV P than the single-modulation VP approach

for QPSK or 8PSK.

To further reveal the fact that the proposed JVP precoding achieves a

similar performance to the conventional VP method for single modulation,

we compare the average BER performance of BDVP, UGVP, JVP with the

conventional VP over all modulation types in Fig. 3.3, where ‘VP Average’

denotes the average BER performance of the conventional VP approach with

QPSK, 8PSK, and 16QAM, which is defined as

BERaverage =
NQPSK

errors +N8PSK
errors +N16QAM

errors

NQPSK
bits +N8PSK

bits +N16QAM
bits

, (3.20)

where NU
bits denotes the total number of bits transmitted for the modulation

type U , while NU
errors denotes the total number of erroneous bits in NU

bits. In

Fig. 3.3, a similar trend to Fig. 3.2 can be observed, and it can be seen that

UGVP outperforms BDVP, while the proposed JVP and ‘VP Average’ achieve

a similar BER performance and both outperform BDVP and UGVP.

Fig. 3.4 compares the computational costs of different VP methods with

respect to the number of transmit antennas, where Nr = Nt . It is not surpris-
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Figure 3.4: Computational cost v.s. number of antennas, Nt = Nr

ing to observe that the computational costs of all VP-based approaches in-

crease with the increasing number of data streams. Due to a reduced search

dimension compared to conventional VP, the computational cost of BDVP

and UGVP is lower, while as expected the complexity of the proposed JVP is

comparable to that of the conventional VP, because the computational cost

is dominated by the sphere search dimension, shown in (3.19).

3.2 Joint Constructive Vector Perturbation

3.2.1 Introduction

While VP-based precoding techniques can achieve a significant performance

gain over linear ZF-based approaches, the computational cost of VP is usu-

ally very high due to the sophisticated sphere search algorithms. In order

to make VP techniques realisable in practice, alternative VP techniques have

been investigated in order to alleviate the high computational burden [36, 37,

38]. In [36], a thresholded VP technique is proposed where the search for the

perturbation vectors is terminated when a pre-defined threshold is reached.

A selective perturbation is further proposed in [37] by only perturbing a part

of the transmit symbols, where a flexible tradeoff between performance and
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complexity is observed. In [38], the perturbation operation is replaced by

a symbol-scaling approach based on the CI formulation introduced in [54,

55], where the sphere search is replaced by symbol scaling that can be ef-

ficiently obtained by solving a quadratic programming (QP) optimisation,

which significantly reduces the computational complexity.

In this section, we first introduce a JCVP approach for PSK modula-

tions and show that the performance of VP can be further improved, with-

out incurring significant additional computational cost. By introducing a

symbol-scaling vector upon the conventional VP approach and jointly opti-

mising both the perturbation vector and the symbol-scaling vector, the noise

amplification effect is minimised and at the same time the transmit sym-

bols are enhanced by the symbol-scaling vector, which therefore leads to an

improved detection performance. We further extend the proposed JCVP to

multiple-modulation scenarios by replacing the perturbation for PSK users

with the symbol-scaling approach while retaining the conventional VP oper-

ation for QAM users. It will be shown that the proposed method can achieve

a comparable performance to JVP, while providing a significant gain in the

computational cost over the JVP proposed in the previous section.

3.2.2 System Model

In this section, a similar MU-MIMO system downlink is considered as in

Chapter 3.1, where the BS with Nt transmit antennas communicates with

K multi-antenna users simultaneously. The number of receive antennas for

each user k is nr
k. The received signal vector can be expressed as

y = Hx+n, (3.21)

where x is the precoded signal vector to be transmitted.
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3.2.3 Proposed JCVP for PSK

We first expand the channel’s pseudo inverse matrix and the transmit sym-

bols into their real part and imaginary part, expressed as

H̄† =

 ℜ
(
H†) −ℑ

(
H†)

ℑ
(
H†) ℜ

(
H†)

 , s̄ =
[
ℜ(s)T ,ℑ(s)T

]T
. (3.22)

To exploit the CI, we follow the symbol-scaling formulation in Chapter 2.2.4

and formulate a diagonal symbol-scaling matrix Φ̄ΦΦ ∈ R2Nr×2Nr is applied

upon the VP approach, and we construct the transmit signal vector as

x̄ =
1

f J
V P
· H̄†

Φ̄ΦΦ
(
s̄+ τ · l̄

)
, (3.23)

where l̄ ∈ Z2Nr×1 is the perturbation vector obtained from standard sphere

search algorithms, which is expanded by the real and imaginary part. The

scaling factor f J
V P represents the noise amplification effect for the proposed

precoder, which is obtained as

f J
V P =

∥∥∥H̄†
Φ̄ΦΦ
(
s̄+ τ · l̄

)∥∥∥
F
. (3.24)

For the proposed precoder, the optimal Φ̄ΦΦ is therefore the one that minimises

the scaling factor f J
V P, and we construct the optimisation problem on Φ̄ΦΦ as

P3.1 : min
Φ̄ΦΦ

∥∥∥H̄†
Φ̄ΦΦ
(
s̄+ τ · l̄∗

)∥∥∥2

F

s.t. ϕn ≥ 1, ∀n ∈ {1,2, ...,2Nt}
(3.25)

where ϕn =
[
Φ̄ΦΦ
]

n,n is the n-th diagonal element in Φ̄ΦΦ. By denoting D̄ =

diag
(
s̄+ τ · l̄∗

)
and rearranging the matrix expression with the vectorisation
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operation, the minimisation problem can be further transformed into

P3.2 : min
Φ̄ΦΦ

∥∥∥H̄†D̄ ·vec
(
Φ̄ΦΦ
)∥∥∥2

F

s.t. ϕn ≥ 1, ∀n ∈ {1,2, ...,2Nt}
(3.26)

P3.2 is a standard QP optimisation that can be efficiently solved with

interior-point methods. Finally, the signal vector to be transmitted after pre-

coding can be expressed as

x =
1

f J
V P
·H†

ΦΦΦ(s+ τ · l) , (3.27)

where ΦΦΦ(s+ τ · l) is the complex equivalence of Φ̄ΦΦ
(
s̄+ τ · l̄

)
. At the receiver,

the received signal vector can be obtained as

y = Hx+n =
1

f J
V P
· (ΦΦΦs+ τ ·ΦΦΦl)+n. (3.28)

It is observed from (3.28) that the perturbation vector for the proposed pre-

coder becomes τ ·ΦΦΦl instead of τ · l for conventional VP methods due to the

scaling of the transmit symbols. Therefore, for each user k, the modulo basis

that is used to remove the perturbation should also be scaled by ΦΦΦ, and the

output of the modulo operation for the m-th stream can be obtained as

rm = mod
[

f J
V P · ym

]
= mod

[
Φmsm +Φmτ · lm + f J

V P ·nm
]

= sm + ñm,

(3.29)

where Φm = [ΦΦΦ]m,m is the m-th diagonal element in matrix ΦΦΦ. The modulo

function mod [xm] for the proposed JCVP is reconstructed as

mod [xm] = fτ·ϕm {ℜ(xm)}+ j · fτ·ϕm̂ {ℑ(xm)} , (3.30)
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where m̂ = m+ Nr
2 . fτ·ϕm (x) in (3.30) is given by

fτ·ϕm (x) = x−

⌊
x+ϕmτ

/
2

ϕmτ

⌋
·ϕmτ. (3.31)

Remark: While the proposed JCVP will be shown to achieve an im-

proved performance over the conventional VP technique for PSK modu-

lations, the proposed JCVP is however difficult to implement in practical

wireless systems, because the modulo function employed at the receiver is

related to the symbol-scaling vector that is dependent on the transmit sym-

bols, shown in (3.31). Nevertheless, the JCVP method introduced above mo-

tivates a more practical JCVP method for multiple-modulation cases, where

the modulo function for PSK modulations is no longer necessary. This cir-

cumvents the above drawbacks, which is introduced in the following.

3.2.4 Proposed JCVP for Multiple-Modulation Scenarios

The proposed JCVP does not directly apply to multiple-modulation scenar-

ios, because the symbol-scaling approach for QAM users will lead to incor-

rect demodulation. To overcome this, in this section we propose to employ

a partial symbol-scaling approach for PSK users and a partial VP approach

for QAM users [37]. To be more specific, for QAM users, the conventional

VP approach is employed and the perturbation vector can be obtained as

l = argmin

∥∥∥∥∥∥Ĥ†

ŝ+ τ ·

 0Nt−L

lL

∥∥∥∥∥∥
2

F

= argmin
∥∥∥Ĥ†ŝ+ τ · Ĥ†

LlL
∥∥∥2

F
, (3.32)

where L is the number of QAM users. Ĥ† =
[
Ĥ†

Nt−L,Ĥ
†
L

]
and ŝ denote the ap-

propriate reordering of H† and s. With this transformation, only the transmit

symbols for users that employ QAM modulations are perturbed. By further

denoting

u = ŝ+ τ ·

 0Nt−L

l∗L

=
[
ŝT

Nt−L,(ŝL + τ · l∗L)
T
]T

, (3.33)
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we employ a symbol-scaling approach for PSK symbols only, and the pre-

coded signals are given by

ˆ̄x =
1

f̂ J
V P
· ˆ̄H† ˆ̄

ΦΦΦū, (3.34)

where f̂ J
V P =

∥∥∥ ˆ̄H† ˆ̄
ΦΦΦū
∥∥∥2

F
, ˆ̄H† and ū denote the expanded Ĥ† and u by the real

and imaginary part, respectively. Subsequently, by applying a similar ap-

proach as in Chapter 3.2.3, the optimal symbol-scaling factor ˆ̄
ΦΦΦ for multiple-

modulation cases can be obtained by solving the following QP optimisation

P3.3 : min
ˆ̄
ΦΦΦ

∥∥∥ ˆ̄H† ˆ̄D ·vec
(

ˆ̄
ΦΦΦ

)∥∥∥2

F

s.t. ϕ̂n ≥ 1, ∀n ∈ {1,2, ...,Nr−L,Nr +1,Nr +2, ...,2Nr−L}

ϕ̂n = 1, ∀n ∈ {Nr−L+1, ...,Nr,2Nr−L+1, ...,2Nr}

(3.35)

where ϕ̂k denotes the k-th element in ˆ̄
ΦΦΦ and ˆ̄D = diag(ū). The second con-

straint ensures that the symbols from QAM modulations are not scaled in

order to avoid detection errors. Finally, the precoded and perturbed signal

vector to be transmitted can be expressed as

x̂ =
1

f̂ J
V P
· Ĥ†

Φ̂ΦΦ

ŝ+ τ

 0Nt−L

lL

 , (3.36)

and the scaling factor f̂ J
V P in the transmit signal vector is accordingly ob-

tained as
f̂ J
V P =

∥∥∥Ĥ†
Φ̂ΦΦu
∥∥∥

F

=

∥∥∥∥∥∥
[
Ĥ†

Nt−L,Ĥ
†
L

]
·

 ΦΦΦNt−L · ŝNt−L

ŝL + τ · lL

∥∥∥∥∥∥
F

=
∥∥∥Ĥ†

Nt−LΦΦΦNt−LŝNt−L + Ĥ†
L (ŝL + τ · lL)

∥∥∥
F
.

(3.37)

Remark 1: It can be seen that the sequence of the sphere search pro-

cess and the symbol-scaling process can also be employed conversely. In the

following section, it will be numerically shown that performing the sphere
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search first will always lead to an improved performance, which is due to the

fact that in the second process, compared to conventional VP that searches

only limited integers, the symbol-scaling approach searches the entire con-

structive areas such that there is a higher possibility that the noise amplifi-

cation effect is minimised.

Remark 2: While only two modulation types are considered in the above

derivation, the extension to multiple modulations is trivial. By applying JVP

introduced in Chapter 3.1 first, multiple modulation types can be divided

into PSK-based modulations and QAM-based modulations. Accordingly,

the symbol-scaling approach can be applied to PSK-based symbols while

the perturbation operation can be applied to QAM-based symbols.

3.2.5 Computational Cost Analysis

Following the complexity analysis in Chapter 3.1.4, the complexity of the

proposed schemes for PSK modulations can be expressed as

CJCV P = O
{

4N3
t /3
}
+O

{
N6

t

}
+O

{
8N3

t T
}
= O

{
4N3

t /3+N6
t +8N3

t T
}
,

(3.38)

where O
{

8N3
t T
}

is the complexity of a QP optimisation with M dimensions,

and T is given by [38]

T = log2
(
max

∣∣δi, j
∣∣+1

)
+ log2 (4M)+1, (3.39)

where δi, j is the i, j-th element of the matrix ΩΩΩ
1/2. For PSK modulations,

ΩΩΩ
1/2 = H̄†D̄ and ΩΩΩ

1/2 = ˆ̄H
† ˆ̄D for the cases of multiple modulations. Similarly,

the complexity of the proposed scheme can be obtained as

CJCV P−AM = O
{

4N3
t /3
}
+O

{
L6
}
+O

{
8(Nt−L)3T

}
= O

{
4N3

t /3+L6 +8(Nt−L)3T
}
.

(3.40)
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3.2.6 Numerical Results

In this section, Monte Carlo simulations are utilised to evaluate the perfor-

mance of the proposed schemes. We assume Nt = 8, and a total number of

K = 4 users with nr
k = 2 for each user. We consider both QPSK scenarios and

multiple-modulation scenarios where 2 users apply QPSK and 2 users apply

16QAM. For the case of multiple-modulation scenarios, we denote ‘CVP-VP’

as the scheme where symbol-scaling approach is performed first and ‘VP-

CVP’ as the scheme where sphere search is performed first.

Fig. 3.5 compares the BER performance of the proposed JCVP with the

conventional VP in [17], BDVP in [48] and CVP in [38] with respect to the

transmit SNR for QPSK. As can be observed, the proposed JCVP further

improves the performance of conventional VP and achieves the best per-

formance among all techniques. It is also observed that CVP can achieve

a better performance when the transmit SNR is low, as it exploits the CI to

benefit its detection performance, while the performance advantage dimin-

ishes with the increase in the transmit SNR.

In Fig. 3.6, the BER performance of the proposed schemes is shown in

multiple-modulation scenarios with respect to the transmit SNR. For users
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Figure 3.5: BER v.s. transmit SNR ρ , Nt = 8, K=4, nr
k = 2, ∀k, QPSK.
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employing QPSK, it is shown that the proposed VP-CVP improves the per-

formance of JVP and achieves the best performance, as the transmit symbols

benefit from the symbol-scaling approach. For users employing 16QAM, the

proposed VP-CVP performs slightly worse than JVP as the sphere search is

performed within a smaller dimension. It is also observed that VP-CVP out-

performs CVP-VP, for both QPSK and 16QAM.

In Fig. 3.7, the computational cost is shown for both QPSK and multiple-

modulation scenarios where both QPSK and 16QAM are employed, where

‘JCVP-MM’ denotes the computational cost of the proposed JCVP technique

in multiple-modulation cases. The number of users that employs either

modulation type in the cases of multiple modulations is N = K/2. For the

proposed JCVP, its computational cost is only slightly higher than that of

the conventional VP, since the complexity is dominated by the sphere search

algorithm. The proposed JCVP for multiple-modulation cases is much more

computationally efficient than JCVP because the sphere search dimension is

reduced from K to K/2, which reveals an improved performance-complexity

tradeoff for the proposed JCVP for multiple-modulation scenarios, com-

pared to the proposed JVP in Chapter 3.1.
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3.3 Summary
In this chapter, we investigate the non-linear VP-based precoding techniques

and propose novel approaches to further enhance the performance of exist-

ing VP approaches. The proposed JVP via the constellation scaling method

is shown to outperform existing VP-based schemes and achieve a compa-

rable performance to the conventional single-modulation VP in multiple-

modulation scenarios. A JCVP approach based on CI and partial per-

turbation is further proposed, which achieves an improved performance-

complexity tradeoff compared to the proposed JVP in multiple-modulation

cases.
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Chapter 4

Mutual Coupling Exploitation for

P2P MIMO Systems

This chapter is based on our works published in [C7], [J5].

4.1 Introduction
Inspired by the compact parasitic-antenna arrays where the MC effect is ex-

ploited, in this chapter we discuss the exploitation of the coupling effect for

generic FD compact single-user multiple-antenna systems.

Most of the existing MIMO techniques are studied under the ideal as-

sumption that the antenna spacing between adjacent antennas in the antenna

array is larger than half of the wavelength, such that the spatial correla-

tion and coupling effect can be negligible. Nevertheless, compact multiple-

antenna systems such as light-weight and small access points (APs) usually

have strict size constraints. In such cases, the correlation effect and MC effect

in the antenna array cannot be neglected [57, 61, 62, 91]. The effect of spatial

correlation and antenna coupling is studied in [61, 62, 91], when an increas-

ing number of antennas is fitted in a fixed physical space. The transmit cor-

relation effect has been experimentally studied in [57, 92, 93], and how the

correlation affects the performance of multiple-antenna systems has been in-

vestigated in [94, 95, 96, 97]. Further studies in [98, 99, 100] have focused on

the robust precoding techniques for correlated channels.
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As for the MC, which is more relevant to this chapter, in [64] its effect

on a 2×2 MIMO system has been analytically studied based on the derived

MC matrix. Further studies on the MC effect can be found in [63, 71, 72, 73],

where the coupling effect in Rician channels are considered in [71]. In [73],

it is shown that the MC has a negative effect on the rate performance in the

uplink, when the antenna spacing becomes smaller. Further studies of the

coupling effect on the channel capacity with respect to the antenna spacing

can be found in [101, 102, 103, 104]. The above studies show that for the

performance of MIMO systems, the existence of MC can be advantageous in

some cases while disadvantageous in other cases.

In order to compensate for the performance loss when a negative cou-

pling effect is observed, a number of approaches have been proposed [74,

75, 76], most of which are based on the derivation of a compensation matrix.

In [74], the effectiveness of the compensation matrix is validated by exper-

iments. In [75], the compensation matrix is derived based on a generalised

scattering matrix of the antenna array and the spherical mode expansion.

In [76], the MC compensation techniques are studied for both transmitting

and receiving antenna arrays. Moreover, novel structures such as match-

ing circuits are further introduced in [7, 20, 77] to manage the detrimental

coupling effect. In [7], by adding parasitic elements to the antenna array,

a reverse coupling effect is formulated to offset the MC effect. In [20], the

impact of the coupling effect at low terahertz (THz) frequencies is studied,

where a mantle cloaking method is applied for strip dipole antennas to re-

duce the MC effect. A novel structure is proposed in [77] to suppress the

coupling effect by adding a U-shaped microstrip. Other techniques target-

ing at the MC compensation can be found in [19, 105, 106]. Nevertheless, it

should be noted that, most of these existing approaches are not from a signal

processing perspective and therefore only apply to specific antenna arrays.

Different from the above methods that are aimed at minimising or com-

pensating for the coupling effect, in this chapter we propose to exploit the
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coupling effect by the use of tunable antenna loads, which further improves

the performance of the generic compact multiple-antenna systems. With the

deployment of the tunable load impedance, for example a varactor, the MC

effect can be controlled by changing the values of each antenna load. We

first consider the full elimination of the coupling effect, where it is analyti-

cally shown that it is not achievable to fully remove the MC effect by solely

tuning the values of the antenna loads. While the full elimination of the cou-

pling effect is not possible, we proceed to study the exploitation of this effect

and show that an improved performance can be obtained. By controlling

each tunable load value based on the CI formulation [41], the inter-symbol

interference generated by the MC effect is rotated and constructively aligned

to the phase of the desired transmit symbol. It is the concept of constructive

region in the CI formulation that further relaxes the feasible region for each

tunable antenna load, which leads to a realisable constructive coupling ma-

trix. The exploitation of the coupling effect is subsequently constructed as

optimisation problems on the tunable antenna loads, and the practical con-

straints on each antenna load with respect to the antenna radiation are taken

into consideration. Moreover, the analytical probability of error is studied by

characterising the separately-correlated channels, and we also discuss the

implementation of the proposed methods in practice, where a look-up table

can be built based on the transmit symbol combination prior to data trans-

mission, such that the proposed techniques can be efficiently applied after-

wards. Our proposed approaches reveal the possibility to exploit the MC

effect to further benefit the system performance instead of compensating for

this effect, which is further validated by numerical results.

The contributions of this chapter are summarised as

• We propose to exploit the MC effect for P2P MIMO systems by means

of analog processing with tunable antenna loads, where both PSK- and

QAM-modulated data symbols are considered.

• The optimisation problems are constructed by exploiting the CI for-
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mulation based on two criteria, and further transformed into convex

optimisation problems, where practical constraints are considered.

• We characterise the separately-correlated channel model, and math-

ematically analyse the system performance in terms of the analytical

probability of error.

• We discuss the practical implementation of the proposed methods,

where a look-up table can be built dependent on the transmit symbol

combination.

4.2 System Model
We consider a P2P MIMO system with Nt antennas at the transmitter and Nr

antennas at the receiver, as shown in Fig. 4.1, where Nr ≥Nt . We assume a to-

tal number of Nt streams, and each data symbol is formed from a normalised

constellation of a PSK or QAM modulation, which is denoted as s ∈ CNt×1.

For PSK modulations, each data symbol satisfies |sk|= 1, where a fixed power

per symbol is maintained. With the MC effect considered at the transmitter,

the effective channel is composed by a coupling matrix Z ∈CNt×Nt , followed

by the propagation channel H ∈ CNr×Nt . The received signal vector can be

obtained as

y = HZs+n, (4.1)

where n is the additive Gaussian noise vector with n ∼ CN
(
0,σ2 · I

)
.

Throughout this chapter, we assume full CSI at the receiver side, and the

Figure 4.1: System model of a P2P MIMO system with MC exploitation
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discussion on the CSI acquisition is briefly presented in Chapter 4.5.1. We

focus on the MC exploitation at the transmitter with tunable antenna loads,

while we assume the antenna spacing for the antenna array at the receiver

is large, i.e., there is no MC effect at the receiver.

Remark: In the case where the receiver also employs a compact array,

there exists coupling effect for the receive antenna array. Then, an effective

channel Ĥ = ZrH can be constructed to incorporate the fixed coupling effect

Zr at the receiver into the channel. This does not affect the exploitation of

the coupling effect at the transmitter.

At the receiver, the signal vector is linearly filtered by the equaliser G ∈

CNt×Nr , and the estimation for the intended data vector can be expressed as

r = Gy = GHZs+Gn. (4.2)

For simplicity, throughout this chapter we assume a ZF equaliser given by1

G =
(
HHH

)−1HH , (4.3)

and the output signal vector of the equaliser is expressed as

r = Zs+ n̂, (4.4)

where n̂ = Gn is the effective noise vector after equalisation. We note that

the approaches detailed below can be straightforwardly extended to other

equalisers, by considering the resulting effective channel after equalisation.

Based on [62, 64], the MC matrix with tunable load impedances can be

derived and defined as (Appendix A)

Z = [zA · I+diag(zL)] [ZM +diag(zL)]
−1, (4.5)

1We have extracted the mutual coupling matrix Z from the channel such that its effect
can be exploited at the transmitter side by adaptive load tuning.
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where zA denotes the fixed antenna load and zL =
[
zL1,zL2, ...,zLNt

]T is the

tunable load impedance vector to be optimised. ZM denotes the mutual

impedance matrix that can be expressed as

ZM =



zA zM1 zM2 · · · zMNt−1

zM1 zA zM1
. . . ...

zM2 zM1
. . . . . . zM2

... . . . . . . . . . zM1

zMNt−1 . . . zM2 zM1 zA


. (4.6)

In (4.6), each zMi denotes the mutual impedance of two antenna elements

with the distance of k ·dt , k ∈ {1,2, ...,Nt−1}. The value of zA and zMi can be

obtained by the induced electromagnetic-field (EMF) method based on the

normalised antenna spacing dt of the antenna array [63] (Appendix B).

4.3 Proposed Method based on CI Formulation

In this section, we firstly prove that the full elimination of the coupling effect

is not achievable by solely tuning the values of the antenna loads, followed

by the proposed methods that exploit the coupling effect based on the CI for-

mulation via convex optimisation. For notational simplicity, we first rewrite

the MC matrix in (4.5) as

Z = [zA · I+diag(zL)] [zA · I+diag(zL)+(ZM− zA · I)]−1

= Zd
(
Zd + Z̃M

)−1
,

(4.7)

where Zd is a diagonal matrix and can be expressed

Zd = zA · I+diag(zL) = diag(zA ·1+ zL) , (4.8)
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where 1 = [1,1, · · · ,1]T . Z̃M is obtained from ZM with all the diagonal ele-

ments being zero, given by

Z̃M = ZM− zA · I. (4.9)

Before being transmitted through the wireless channel, the signal vector is

affected by the coupling effect, which is fully represented by the multiplica-

tion of the MC matrix, as shown in (4.1) and (4.4). Therefore, we can regard

the MC matrix as an interference matrix that generates the undesired inter-

symbol interference. We note that in the ideal case without any coupling,

Z = I and no inter-symbol interference is observed. In the presence of the

coupling effect, the equivalent signal vector to be transmitted becomes

s̃ = Zs = Zd
(
Zd + Z̃M

)−1s. (4.10)

Based on the knowledge of the linear algebra theory, the linear scaling of a

vector can be equivalently represented by the vector multiplied by a diagonal

matrix, and therefore s̃ can also be expressed as

s̃ = diag(ΛΛΛ)s, (4.11)

where we introduce ΛΛΛ = [λ1,λ2, · · · ,λNt ]
T and each data-dependent λk =

[s̃]k
sk

represents a scaling for the corresponding data symbol sk. The property

of ΛΛΛ then fully characterises the coupling effect on the transmitted signals.

It should be noted that the mathematical representation of (4.11) does not

necessarily mean that there is no inter-symbol interference, because each λk

can be a complex number, which geometrically represents the existence of a

phase rotation. Based on (4.10) and (4.11), we can obtain

Zd
(
Zd + Z̃M

)−1s = diag(ΛΛΛ)s. (4.12)
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(4.12) can be further transformed into

s =
(
Zd + Z̃M

)
Z−1

d diag(ΛΛΛ)s

⇒ s = diag(ΛΛΛ)s+ Z̃MZ−1
d diag(ΛΛΛ)s

⇒ [diag(ΛΛΛ)− I]s+ Z̃MZ−1
d diag(ΛΛΛ)s = 0,

(4.13)

which reveals the relationship between the scaling vector ΛΛΛ and the load

impedance matrix Zd . Accordingly, based on (4.13) we first consider the full

elimination of MC, and further explore two different design approaches for

Zd based on CI.

4.3.1 Full Elimination of the MC Effect
We firstly consider the signal processing technique that fully eliminates the

coupling effect. Mathematically, this is equivalent to s̃ = s, which further

leads to

λk = 1, ∀k ∈N , (4.14)

where we denote N = {1,2, · · · ,Nt}. By substituting (4.14) into (4.13), the

following condition should be satisfied

Z̃MZ−1
d s = 0, (4.15)

which means that for a specific transmit symbol vector s, if we can adjust

each value of the load impedance zLk to satisfy (4.15), the effect of MC can

be fully eliminated. Noting that Zd is a diagonal matrix and s is a column

vector, (4.15) can be further transformed into

Z̃Mdiag(s)vec
(
Z−1

d

)
= 0, (4.16)

which leads to the following proposition.

Proposition: It is not achievable to fully eliminate the coupling effect

by changing the values of each antenna load zLk , for data symbols from a

normalised PSK or QAM constellation where sk 6= 0, ∀k.
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Proof: (4.16) can be regarded as a feasibility problem, where we need to

obtain the value of each load impedance to satisfy this equation for a specific

transmit symbol vector s. This is equivalent to finding non-zero solutions for

a linear system Ax = 0. For this problem, x = vec
(
Z−1

d

)
is a column vector

and A = Z̃Mdiag(s). Based on the linear algebra theory, the condition for

such a linear system to have a non-zero solution is det{A}= 0, which means

det
{

Z̃Mdiag(s)
}
= 0. (4.17)

(4.17) is further transformed into the following condition

det
{

Z̃M
}
= 0 or det{diag(s)}= 0. (4.18)

Since diag(s) is a diagonal matrix and it is easy to observe from (4.9) that

the determinant of Z̃M is also not zero, it is therefore concluded that (4.16)

cannot have non-zero solutions.

Remark: Based on the above proposition, (4.16) can only have zero so-

lutions. With the definition of Zd in (4.8), this means that the values of each

zLk will be extremely large in practice, such that Z−1
d approaches 0. In this

case, zA and each zMi will be very small compared to zLk and therefore can be

negligible. Subsequently, (4.7) will be transformed into

Z = [zA · I+diag(zL)] [ZM +diag(zL)]
−1

≈ diag(zL) [diag(zL)]
−1

= I.

(4.19)

However, this case is not feasible in practice, as an extremely large value of

the load impedance will result in an extremely small current in the trans-

mitting antenna, which leads to a very small power transfer efficiency [107,

108].
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4.3.2 MC Exploitation based on CI

While the full elimination of the coupling effect is not achievable, in the fol-

lowing we show that this effect can be exploited to further benefit the MIMO

detection performance based on the CI formulation in Chapter 2.2.4. Specific

to the MC exploitation in this chapter, the constructive region relaxes the

strict angle requirement for manipulating the interfering signals, and more

importantly relaxes the value range of each load impedance, which makes

it possible to obtain a constructive coupling matrix. Accordingly, different

from the case in Chapter 4.3.1 where the full elimination is not possible, the

exploitation of the coupling effect based on CI can be achieved with practical

antenna load values. For a practical antenna array, the real part of each zLk

should be non-negative [109, 110, 111]. In the following, we employ optimi-

sation approaches to determine the scaling vector under realistic implemen-

tation constraints, where we consider two optimisation criteria, as detailed

below.

Max-Min: Recall (4.13), we first consider a max-min optimisation prob-

lem where the minimum value of ℜ(λk) is maximised, formulated based on

the CI formulation in Chapter 2.2.4 as

P4.1 : max
λk,zLk

min
k

ℜ(λk)

s.t. [diag(ΛΛΛ)− I]s+ Z̃MZ−1
d diag(ΛΛΛ)s = 0

[ℜ(λk)−1] · tan(θt)≥ |ℑ(λk)| , ∀k ∈N

ℜ(zLk)≥ 0, ∀k ∈N

ℜ(λk)≥ 1, ∀k ∈N

(4.20)

By introducing tk, xk, t and x that are given by

t = [t1, t2, · · · , tNt ]
T , x = [x1,x2, · · · ,xNt ]

T , tk = λk−1, xk =
λk

zA + zLk

, ∀k ∈N ,

(4.21)
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the max-min problem P4.1 in (4.20) can be further transformed into

P4.2 : max
xk,tk

ω

s.t. diag(t)s+ Z̃Mdiag(x)s = 0

ℜ(tk) · tan(θt)≥ |ℑ(tk)| , ∀k ∈N

ℜ(zLk)≥ 0, ∀k ∈N

ω ≤ℜ(tk)+1, ∀k ∈N

(4.22)

where ω is an introduced auxiliary variable. Based on (4.21), we can express

the load impedance zLk as

zLk =
tk +1

xk
− zA. (4.23)

As each tk is a complex variable, the constraint ℜ(zLk)≥ 0 is equivalent to

ℜ

(
tk +1

xk

)
≥ℜ(zA)

⇒ [ℜ(tk)+1]ℜ(xk)+ℑ(tk)ℑ(xk)≥ℜ(zA) · |xk|2 .
(4.24)

Note that (4.24) is a complicated non-convex constraint that makes the op-

timisation non-convex. In the following, we perform a transformation such

that this non-convex constraint can be transformed into a convex one, and

the optimisation can be efficiently solved. To be more specific, by introduc-

ing a parameter µth multiplied to the right-hand side of the constraint, we

remove the imaginary part multiplication ℑ(ti)ℑ(xi) at the left-hand side,

and (4.24) is transformed into

[ℜ(tk)+1]ℜ(xk)+ℑ(tk)ℑ(xk)≥ℜ(zA) · |xk|2

⇒ [ℜ(tk)+1]ℜ(xk)≥ µthℜ(zA) · |xk|2

⇒ℜ(xk)≥
µthℜ(zA)

ℜ(tk)+1
· |xk|2,

(4.25)
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where µth ≥ 1. With a larger value of µth, there is a higher possibility that the

optimisation problem returns a practical solution. However, a larger value of

µth will also lead to a loss in the performance gains, as it reduces the feasible

domain of the variables. This effect will be numerically studied by simu-

lation results in Chapter 4.6. We further impose a relatively strong convex

constraint to substitute the non-convex constraint (4.25), which is an upper-

bound, such that the solution obtained with the upper-bound constraint also

satisfies the original constraint. Particularly, based on [ℜ(tk)+1] ≥ 1, if the

following condition is satisfied

ℜ(xk)≥ µthℜ(zA) · |xk|2 , (4.26)

the constraint in (4.25) is automatically satisfied. With this approach, the

non-convex constraint (4.24) has been substituted with a convex constraint

as shown in (4.26), and the final optimisation problem in a convex form is

given by
P4.3 : max

xk,tk
ω

s.t. diag(t)s+ Z̃Mdiag(x)s = 0

ℜ(tk) · tan(θt)≥ |ℑ(tk)| , ∀k ∈N

ℜ(xk)≥ µthℜ(zA) · |xk|2, ∀k ∈N

ω ≤ℜ(tk)+1, ∀k ∈N

(4.27)

P4.3 is a second-order cone programming (SOCP) optimisation and can be

efficiently solved by convex optimisation tools or interior-point methods.

Sum-Max: We also pursue an optimisation problem that targets at max-

imising the average performance improvement for the data symbol. This
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leads to a sum-max problem, constructed as

P4.4 : max
λk,zLk

Nt
∑

k=1
ℜ(λk)

Nt

s.t. [diag(ΛΛΛ)− I]s+ Z̃MZ−1
d diag(ΛΛΛ)s = 0

ℜ(tk) · tan(θt)≥ |ℑ(λk)| , ∀k ∈N

ℜ(zLk)≥ 0, ∀k ∈N

ℜ(λk)≥ 1, ∀k ∈N

(4.28)

which can be similarly transformed into a convex version, given by

P4.5 : max
xk,tk

Nt

∑
k=1

ℜ(tk)

s.t. diag(t)s+ Z̃Mdiag(x)s = 0

ℜ(tk) · tan(θt)≥ |ℑ(tk)| , ∀k ∈N

ℜ(xk)≥ µthℜ(zA) · |xk|2, ∀k ∈N

(4.29)

After the optimisation problems are solved, the values of each antenna load

can be calculated based on (4.23). Based on the description of the CI formu-

lation in Chapter 2.2.4, the extension to QAM modulations can be similarly

obtained and is omitted for brevity.

4.4 Performance Metric
In this chapter, we present the performance metric for the proposed ap-

proaches, where we focus on the ZF equalisation method. The separately-

correlated channel model employed is firstly characterised, followed by the

derivation of the analytical probability of error.

4.4.1 Correlated Channel Characterisation

We firstly study the property of the separately-correlated channels employed

in this chapter. Based on the channel modelling in Chapter 2.3.2 and note
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that Hα is diagonal, we can express the elements in H as

[H]i, j =
1√
Np

Np

∑
m=1

αm[Ar]i,m[At ]m, j. (4.30)

For ease of analysis, we only consider the expectation over the Rayleigh com-

ponents Hα and regard Ar, At as constant matrices throughout the deriva-

tion. Noting that each αm is independent and αm ∼ CN(0,1), therefore each

element in H is the summation of independent Gaussian variables, which

follows a Gaussian distribution with zero mean. The resulting channel ma-

trix H is therefore also Gaussian with zero mean. To calculate the probability

of error, we need the knowledge of the diagonal terms of the covariance for

the channel vector of each user k, and we consider the following statistics

CH = E
{
[H−E(H)] · [H−E(H)]H

}
= E

{
ArHαAH

t AtHH
α AH

r
}

= Ar ·E
{

HαAH
t AtHH

α

}
·AH

r

= Ar ·E{T} ·AH
r

(4.31)

where for simplicity we denote

T = HαAH
t AtHH

α = HαAHH
α , (4.32)

where A = AH
t At . Note that Hα is diagonal, and each element in T can be

calculated as

[T]i, j =
1

Np
αiα

H
j [A]i, j. (4.33)

Based on the fact that each entry in Hα is independent, we obtain

E
{

αiα
H
j
}
= 0, ∀i 6= j,

E
{

αiα
H
i
}
= 1, ∀i ∈

{
1,2, · · · ,Np

} (4.34)
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which further leads to

E
{
[T]i, j

}
= 0, ∀i 6= j,

E
{
[T]i,i

}
=

1
Np
·
[
Adiag

]
i,i ,

(4.35)

where Adiag = diag
{
[A]1,1, [A]2,2, · · · , [A]Np,Np

}
is a diagonal matrix formed

from the diagonal entries of A. With the above derivation, (4.31) can finally

be obtained as

CH =
1

Np
·ArAdiagAH

r . (4.36)

4.4.2 Probability of Error
Based on the above results, we now study the analytical probability of error

for the proposed approaches. Specifically, for conventional ZF receiver with

PSK modulations, the analytical BER over Rayleigh fading channels is given

by (2.7) [30, 112, 113]. For the proposed method where the coupling effect is

exploited to benefit the system performance, each transmit symbol sk is en-

hanced by a factor λk, which can be translated as an increase in the transmit

power, and |λk|2 can represent the power improvement factor, without incur-

ring additional interference. Therefore, the analytical BER for the proposed

approaches based on the ZF equaliser can also be obtained by (2.7), where

γ̂k for the proposed scheme is obtained as

γ̂k =
|λk|2

log2 (N) ·σ2
[
C−1

H
]

k,k

. (4.37)

4.5 Practical Implementation Aspects
In this section, the practical implementation of the proposed techniques is

explored, where a number of practical implementation issues are discussed.

4.5.1 Extraction of H

From (4.3), we observe that the receiver needs to obtain H to perform the

equalisation, while we note that we can only obtain HZ using generic chan-
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nel estimation techniques with pilots. Therefore, we need to extract H from

HZ. We note that the mutual impedance matrix ZM is only dependent on

the array structure and does not change, and accordingly ZM is known to the

transmitter either by the induced EMF method or other experimental mea-

surements, for example the boundary-value approach or the transmission-

line method [63]. At the pilot stage, the channel is obtained by first setting

the value of each antenna load to a specific reference value, for example

zLk = 50Ω, ∀k ∈N , which is assumed known to both the transmitter and the

receiver. We denote the resulting load impedance vector as z0
L and MC ma-

trix as Z0. With standard channel estimation techniques, we can obtain HZ0

and further extract H from HZ0 to obtain the equaliser G, as Z0 is already

known to the receiver. Accordingly, the proposed approaches that exploit

the constructive coupling effect can be employed during data transmission.

4.5.2 Use of Look-Up Tables

Based on (4.13) and the description of the proposed techniques, we observe

that the optimal values of the analog loads are solely dependent on the trans-

mit symbol vector, while irrespective of the channel matrix. This enables the

design of a look-up table, in which the optimal values of the antenna loads

can be directly obtained based on the transmit symbol vector. With this ap-

proach, the optimisation process can be conducted off-line to obtain the op-

timal values of the load impedances for each possible data symbol combi-

nation, prior to data transmission. This information can then be kept and

used for future data transmission, and a symbol-level optimisation is there-

fore no longer needed, which significantly reduces the computational costs.

If we assume N-PSK modulation is employed, the total number of possible

combinations for the transmit symbol vector will be L = NNt , which is equal

to the length of the look-up table. To illustrate this approach intuitively, an

example of the look-up table is shown in Table 4.1, where we assume a 2×2

MIMO system with QPSK modulation, leading to a total number of 16 pos-

sible combinations of the transmit symbol vector. Without loss of generality,



4.5. Practical Implementation Aspects 105

we denote the 4 constellation points of QPSK as

m1 =
1√
2
+ j · 1√

2
, m2 =

1√
2
− j · 1√

2
, m3 =−

1√
2
− j · 1√

2
, m4 =−

1√
2
+ j · 1√

2
.

(4.38)

In the look-up table, the optimal load values are obtained based on the op-

timisation P4.3. In Table 4.1, dt and dr represents the equidistant antenna

spacing normalised by the carrier wavelength at the transmitter and receiver,

respectively. dl denotes the normalised dipole length of the antenna array.

Transmit Symbol Vector Optimal Impedance Values (Ω)
Antenna 1 Antenna 2 Antenna 1 Antenna 2

m1 m1 50 50
m1 m2 43.546-40.203 j 52.009+26.114 j
m1 m3 45.812-7.396 j 45.812-7.396 j
m1 m4 52.053+26.096 j 43.532-40.181 j
m2 m1 49.217+27.758 j 44.265-41.923 j
m2 m2 50 50
m2 m3 43.567-40.277 j 51.902+26.201 j
m2 m4 45.812-7.396 j 45.812-7.396 j
m3 m1 45.812-7.396 j 45.812-7.396 j
m3 m2 52.053+26.096 j 43.532-40.181 j
m3 m3 50 50
m3 m4 43.546-40.203 j 52.009+26.114 j
m4 m1 43.567-40.277 j 51.902+26.201 j
m4 m2 45.812-7.396 j 45.812-7.396 j
m4 m3 49.217+27.758 j 44.265-41.923 j
m4 m4 50 50

Table 4.1: Look-up Table for 2×2 MIMO, QPSK, P4.3, dt=0.2, dr=0.5, dl=0.3, µth=1.1

4.5.3 Solutions for Extreme Load Values
It should be noted that, for some transmit symbol combinations, the solu-

tions returned by convex optimisation lead to extremely large negative val-

ues of load impedances, which is unreasonable and means that there ex-

ist no practical solutions for such symbol combinations.2 In the example of

Table 4.1, this happens when identical symbols are transmitted, which are

[m1,m1]
T , [m2,m2]

T , [m3,m3]
T and [m4,m4]

T .
2We note that the value range of the imaginary part of a practical tunable load is only

hundreds of Ω.
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Intuitively, this phenomenon is extended to larger transmit antenna

numbers, where no practical solutions can be obtained when all the anten-

nas transmit the same symbols. In this case, the fixed coupling matrix is

used and the value for all the antenna loads is zLk = 50Ω, ∀k ∈N , as shown

in Table 4.1. Furthermore, based on the above analysis, we can obtain the

feasibility probability of the proposed approaches for N-PSK, given by

Pf easibility = 1− N
NNt

= 1− 1
NNt−1 . (4.39)

We further note the value of µth also has an impact on the feasibility, and

therefore Pf easibility in (4.39) can be regarded as an upper bound. The effect

of µth on the feasibility probability will be numerically studied in the simu-

lation results.

4.5.4 Symbol-by-Symbol Switching of Loads
Note that the proposed optimisations necessitate the adaptation of the load

impedance values zLk on a symbol level, where for each data transmis-

sion, the value of each load impedance is tuned based on the look-up ta-

ble to enable the application of the proposed methods. For the fast tun-

ing of the analog loads, it has been shown in [114] and the references

therein that varactor technologies that support adaptive impedance tun-

ing can be divided into 3 categories: semiconductor-based varactor diodes,

microelectromechanical-system varactors, and ferroelectric-based varactors.

Specifically, semiconductor-based varactor diodes and ferroelectric-based

varactors can support the tuning speed as fast as 100ns-100µs [114, 115,

116].3 Semiconductor-based varactor diodes are more attractive in low

power design, while ferroelectric-based varactors are capable for high power

design. The tuning of the load impedances can be realised by a matching sys-

tem based on an automated impedance tuning unit with ferroelectric varac-

tors. Furthermore, recent studies on ESPARs, where the radiation patterns
3For example, the symbol rate in LTE is 66.7µs, which means that the symbol-by-symbol

switching of the loads can be supported.
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are formed by tuning the load impedance for each parasitic element, have

shown that the frequent tuning of the load impedance is achievable [8, 14, 15,

21, 22]. This is verified by the proof-of-concept experiments in [117], which

supports the implementation of the proposed MC exploitation in practical

wireless networks. The study of the downlink precoding techniques for ES-

PARs will be presented in Chapter 6.

4.6 Numerical Results
In this section, we evaluate the usefulness of the proposed approaches based

on Monte Carlo simulations. We assume a carrier frequency of f =2.6GHz,

and the separately-correlated channels are generated based on Chapter 2.3.2

with Np = 50. A dipole antenna array with a normalised dipole length of

dl = 0.3 is assumed, where the normalised antenna spacing at the transmitter

and receiver is dt = 0.2 and dr = 0.5, respectively. In the simulations we con-

sider a 4×4 P2P MIMO system. For simplicity, the ZF receiver is employed

throughout the simulations, while the performance benefits extend to other

receiver structures. The above parameters remain constant throughout the

simulations unless otherwise stated. For clarity, the following abbreviations

are employed throughout the simulations.

• ‘ZF no MC’: ZF receiver under the ideal case with no MC effect, and

this case is for reference only;

• ‘ZF with MC’: ZF receiver with fixed coupling effect, where the value

of each antenna load is 50Ω;

• ‘max-min’: the proposed approach based on the ‘max-min’ optimisa-

tion problem P4.3;

• ‘sum-max’: the proposed approach based on the ‘sum-max’ optimisa-

tion problem P4.5.

Fig. 4.2 presents the BER performance of the proposed approaches for

BPSK and QPSK with respect to the increasing transmit SNR. For both mod-

ulations, it is observed that ‘ZF with MC’ is inferior to ‘ZF no MC’ and
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achieves the worst BER performance, due to the detrimental coupling effect.

For the proposed methods that exploit the MC effect, it can be observed that

both the ‘max-min’ and ‘sum-max’ approach outperform ‘ZF no MC’ and

‘ZF with MC’. Specifically, an SNR gain of 5dB for BPSK and 7dB for QPSK

is observed compared to ‘ZF with MC’, as the antenna coupling effect is ex-

ploited to improve the performance. Moreover, for both modulations it is

observed that ‘max-min’ outperforms ‘sum-max’ and achieves the best BER

performance. As for the analytical results, a close match can be observed,

which validates our analyses in Chapter 4.4.

In Fig. 4.3, we evaluate the rate performance of the proposed approaches

in terms of the average throughput, where the throughput is defined as

T = (1−BLER) ·m ·Nt bits/channel use

= (1−Pb)
F ·m ·m ·Nt bits/channel use.

(4.40)

In (4.40), BLER denotes the block error rate, and Pb is the BER. m denotes the

information bits per symbol, and the block length used for the simulations
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Figure 4.2: Analytical and simulated BER v.s. transmit SNR, 4×4, dt = 0.2, dr = 0.5,
dl = 0.3, µth = 1.1
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is F = 20 symbols. For both modulations, it can be observed that ‘ZF with

MC’ achieves the lowest throughput performance due to a higher BER. For

both proposed methods, we observe a throughput benefit compared to the

conventional case with and without MC, as the coupling effect is further

exploited. It is not surprising to observe that the method based on ‘max-

min’ also outperforms ‘sum-max’ in terms of the average throughput.

In Fig. 4.4, the BER performance of the proposed schemes for 16QAM

is shown with respect to the increasing transmit SNR. It is first observed

that the coupling effect has a much more severe impact on the BER perfor-

mance for 16QAM. For the proposed approaches, a similar trend can be ob-

served where the proposed methods can still offer performance gains. The

‘max-min’ and ‘sum-max’ approaches achieve a similar BER performance

for 16QAM, and we can observe an around 2dB gain compared to the ideal

ZF case without MC. We should note that ‘ZF no MC’ here is only shown as

a reference, and the performance gain over the practical ‘ZF with MC’ is still

large at the high SNR regime, which means that the proposed approaches

are also advantageous for QAM modulations.

Fig. 4.5 compares the BER performance of each scheme with respect to
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Figure 4.3: Average throughput v.s. transmit SNR, 4×4, dt = 0.2, dr = 0.5, dl = 0.3,
µth = 1.1, F = 20 symbols per frame, BPSK and QPSK
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Figure 4.5: BER v.s. value of µth, 4×4, dt = 0.2, dr = 0.5, dl = 0.3, SNR=20dB

the optimisation parameter µth for both BPSK and QPSK. For the proposed

MC exploitation approaches based on CI, it is seen that the BER becomes

slightly worse with an increase in the value of µth, because a larger value of

µth reduces the feasible region of the antenna loads, as seen in P4.3 and P4.5.

We also observe a consistent performance gain for ‘max-min’ compared to
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Figure 4.6: BER performance v.s. normalized dipole length, 4×4, dt = 0.2, dr = 0.5,
µth = 1.1, SNR=30dB, QPSK

‘sum-max’.

In the following simulations, without loss of generality we focus on the

QPSK modulation. In Fig. 4.6, the BER performance is compared with re-

spect to the normalised dipole length. For ‘ZF with MC’, the most detri-

mental coupling effect is observed when the dipole length is dl = 0.4, which

greatly degrades the system performance. ‘ZF no MC’ does not include any

coupling effect and therefore its performance remain constant with the in-

creasing dipole length. For the proposed approaches, it is observed that they

outperform both ‘ZF with MC’ and ‘ZF no MC’ with the exploitation of MC.

Generally, techniques based on ‘max-min’ are shown to achieve the best per-

formance for all values of the dipole length. With the increase in the dipole

length, the BER performance becomes slightly worse. This is because the

value of ℜ(zA) becomes larger when the dipole length increases (Appendix

B), which reduces the feasible region of each tunable load and therefore leads

to a worse BER performance.

Fig. 4.7 presents the BER with an increase in the antenna spacing at the

transmitter. When the antenna spacing is small, ‘ZF with MC’ achieves a

much worse BER performance compared to other schemes due to the strong
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Figure 4.7: BER v.s. normalised antenna spacing at the transmitter, 4× 4, dr = 0.5,
dl = 0.3, µth = 1.1, SNR=30dB, QPSK

coupling and correlation effect among the antenna array. For the proposed

techniques, it is observed that they outperform both ‘ZF with MC’ and ‘ZF no

MC’ as the MC effect is exploited to further benefit the system performance.

With the increase in the antenna spacing, the performance gain between the

proposed schemes and ‘ZF with MC’ becomes smaller as the coupling effect

becomes weak, while the BER performance of all approaches is improved

due to the reduced correlation effect when the antenna spacing is increased.

The proposed techniques that exploit the MC effect therefore enable the de-

sign of compact antenna arrays.

Fig. 4.8 depicts the BER performance with respect to the number of

transmit antennas, where we assume Nr = Nt at SNR=30dB. With an increase

in the antenna number, while the BER performance becomes worse for each

scheme, a consistent performance gain can still be observed for the proposed

methods over conventional ZF receiver with a fixed coupling effect. The per-

formance gain of the proposed schemes persists with the number of anten-

nas increasing. Moreover, for all cases it is observed that the proposed ap-

proach based on ‘max-min’ criterion outperforms the ‘sum-max’.

Fig. 4.9 illustrates the feasibility probability of the ‘max-min’ optimisa-
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tion P4.3 with respect to the number of antennas, where the upper bound

is obtained by (4.39). As can be seen, with an increase in the optimisation

parameter µth, the feasibility improves while the performance will be de-

graded, as evidenced by Fig. 4.5, which reveals the existence of a tradeoff

between the performance and the feasibility.
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4.7 Summary
In this chapter, we study the MC effect among antenna elements and propose

techniques that further exploit this effect for P2P MIMO systems. While it is

first shown that the full elimination of the coupling effect is not realisable via

the tunable antenna loads, approaches that exploit the MC effect to further

benefit the performance are proposed. The optimal values of each antenna

load are obtained via convex optimisation methods based on the CI formu-

lation, where practical constraints for the antenna array are considered. The

implementation of the proposed schemes is also discussed, where a look-up

table is introduced for practical application. The performance advantages of

the proposed approaches over the cases with fixed coupling effect have been

validated via extensive numerical results, especially in compact antenna de-

ployments where the spacing between antenna elements is small.
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Chapter 5

Mutual Coupling Exploitation for

Multiuser Systems

This chapter is based on our works in [C5], [C9], [J3].

5.1 Introduction
In the previous chapter, we have proposed a MC exploitation technique for

P2P MIMO systems. In this chapter, we extend our study on the MC ex-

ploitation to multi-user multiple-antenna systems.

Specific in this chapter, we propose a joint AD transmission approach,

which exploits the coupling effect rather than eliminating this effect, to fur-

ther improve the performance of multiple-antenna systems based on convex

optimisation. In the proposed method, each antenna element is equipped

with a tunable load to control the coupling effect and facilitate analog pro-

cessing. By judiciously selecting the value of each antenna load through an

iterative approach, the antenna coupling matrix and the precoding matrix

are jointly optimised, which leads to an improved performance compared

to existing approaches. Nevertheless, the joint optimisation results in a rel-

atively high computational cost. For this reason, we further propose a de-

coupled low-complexity precoding approach to alleviate the computational

burden of the joint scheme, where the digital precoding matrix is firstly ob-

tained, based on which the optimisation on the tunable loads is performed.
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The decoupled approach also enables the direct combination of the MC ex-

ploitation with existing closed-form digital precoding methods, where only

an optimisation on the tunable antenna loads is needed. Moreover, since

it may be infeasible to obtain any continuous load values in real systems, a

more practical case with quantised antenna loads on the optimisation of the

MC exploitation is considered, where a sequential search method based on

the greedy algorithm is proposed.

Our study is further extended to the case of imperfect CSI, where

we consider both the statistical CSI error model and the norm-bounded

CSI error model, as introduced in Chapter 2.3.4. By calculating the SINR

of the received symbols, we prove the optimality of the proposed ap-

proaches for closed-form precoding techniques in imperfect CSI scenarios.

For optimisation-based precoding approaches, we further propose the ro-

bust precoding methods for these two CSI error scenarios, where the ro-

bust scheme is designed by incorporating the equivalent noise power for the

statistical CSI errors, while the worst-case SINR is optimised for the norm-

bounded CSI errors. Simulation results reveal the performance advantages

of both the joint and the decoupled precoding approaches over the conven-

tional digital precoding techniques with fixed MC effect, in both perfect CSI

and imperfect CSI scenarios.

Accordingly, the profound conclusion from our works in Chapter 4 and

Chapter 5 is that, hardware imperfections in the form of MC can be beneficial

and further exploited to improve the system performance.

For clarity, the contributions of this chapter is summarised as

• We construct a joint AD precoding scheme that exploits the coupling

effect for MU-MISO systems, where the optimal precoding and load

values are obtained.

• We further propose a decoupled method to alleviate the high compu-

tational cost of the joint scheme. This decoupled method enables the

use of closed-form precoders for the MC exploitation.
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• For the practical case where the quantised load values are employed,

we propose a sequential search approach based on a greedy algorithm

to efficiently obtain the desired load values for each antenna element.

• We extend our study to imperfect CSI. By analysing the received SINR,

we show that the proposed approaches can be directly extended to im-

perfect CSI for closed-form precoders, and the optimality still holds.

• For optimisation-based precoding approaches, we further propose the

robust precoding methods for both the statistical CSI errors and the

norm-bounded CSI errors.

5.2 System Model

We consider a MU-MISO system downlink, as shown in Fig. 5.1, where a BS

with Nt antennas each with its own RF chain and tunable load, communi-

cates with K single-antenna users simultaneously, and K ≤Nt . By employing

a downlink precoding matrix P ∈CNt×K at the BS, the received signal vector

after the channel can be obtained as

y = Dx+n = DPs+n, (5.1)

where n = [n1,n2, ...,nK]
T represents the additive Gaussian noise vector. s ∈

CK×1 denotes the symbol vector, where for simplicity we assume that each

element in s is from a normalised constellation and satisfies E
{

ssH} = I.

D ∈CK×Nt denotes the channel matrix, and in this chapter a geometric semi-

correlated channel is considered, as described in Chapter 2.3.2. By incorpo-

rating the MC matrix in the channel to characterise the coupling effect, the

channel vector for the k-th user is expressed as

dk = gkAkZ, (5.2)
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Figure 5.1: System model of a MU-MISO system with MC exploitation

where D =
[
dT

1 ,d
T
2 , ...,d

T
K
]T . Z represents the MC matrix as in Chapter 4,

given by

Z = [zA · I+diag(zL)] [ZM +diag(zL)]
−1. (5.3)

By decomposing P = [p1,p2, ...,pK], the received signal for the k-th user

can be obtained based on (5.1) as

yk = dkPs+nk = dkpksk +dk

K

∑
i 6=k

pisi +nk. (5.4)

Based on (5.4), we can express the received SINR of the k-th user as

γk =
|dkpk|2

K
∑

i6=k
|dkpi|2 +σ2

, (5.5)

where σ2 is the noise power. In this chapter, perfect CSI is firstly assumed,

while the effect of imperfect CSI is further investigated in the following.

5.3 Joint Analog-Digital Precoding Approach
In this section, we introduce the proposed joint AD precoding approach. We

note that the joint optimisation can offer the best performance at the cost of

a relatively high computational cost. Therefore, it is more suitable for small-

scale MIMO systems in practice or as a performance benchmark.

With a tunable load employed for each antenna element, the mutual

coupling effect can be controlled by modifying the value of each load, as
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introduced in Chapter 4 in detail. For MU-MISO systems in this chapter, we

propose to jointly optimise the precoding matrix in the digital domain and

each antenna load in the analog domain, such that the resulting precoding

matrix and load impedances are jointly optimal, which therefore improves

the system performance. To exploit the MC effect, we firstly rewrite D = HZ,

where H is given by

H =
[
hT

1 , ...,h
T
k , ...,h

T
K
]T
, (5.6)

and hk = gkAk as in the semi-correlated channel model. With this decompo-

sition, (5.1) can be rewritten as

y = HZPs+n. (5.7)

Based on (5.7), we construct the proposed precoding matrix P as

P =
1
f
·Z−1W. (5.8)

Following Chapter 2.2.1, f is a scaling factor that ensures the signal power

is not changed after precoding, given by

f =
∥∥Z−1W

∥∥
F . (5.9)

The introduction of the scaling factor f for the constructed precoding matrix

in (5.8) indeed contains an implicit power constraint and ensures that the

transmit power is the same as the power of the data symbol vector, which is

unlike the generic SINR balancing problem that contains a power budget in

the optimisation constraints [40, 49]. As will be shown in the following, our

construction of the optimisation P5.1 does not have such an explicit power

constraint.

Accordingly, with the proposed precoding structure, (5.7) can be further

transformed into

y =
1
f
·HWs+n. (5.10)
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As observed from (5.10), the proposed precoding structure fully eliminates

the coupling effect in the channel, while the MC still has an effect on the

system performance, which is fully characterised by the resulting scaling

factor f . With the proposed precoding method, the received SINR for the

k-th user in (5.5) is transformed into

γk =
|hkwk|2

K
∑

i6=k
|hkwi|2 + f 2σ2

, (5.11)

where W = [w1,w2, · · · ,wK], and f can accordingly be seen as a noise ampli-

fication factor. In (5.11), it is observed that the received SINR γk is related

to both wk and f . By jointly optimising W and selecting the values for each

load impedance, we maximise the minimum received SINR, which leads to

the following optimisation problem

P5.1 : max
zL,W

min
k

γk

s.t. ℜ(zLi)≥ 0, ∀i ∈N

(5.12)

where N = {1,2, · · · ,Nt}. The constraint on the value of each zLk is from

the fact that the real part of practical load impedances should be positive,

such that the antenna array can radiate power [109, 110, 111]. Based on the

expression of f , the optimisation problem P5.1 in (5.12) is not jointly convex

in zL and W, and cannot be directly solved. Nevertheless, we note that P5.1 is

a bi-convex optimisation problem, i.e., it is convex with respect to W when zL

is fixed and vice versa. Therefore, in the following we propose an alternating

optimisation approach to obtain the optimal W and zL.
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5.3.1 Solving W When zL is Fixed

When zL is fixed, the optimisation problem P5.1 is reduced to a typical FD

precoding problem, which can be expressed as

P5.2 : max
W

min
k

γk

s.t.
∥∥Z−1W

∥∥2
F = p0

(5.13)

Remark on the Formulation of P5.2: In P5.2, we note that the con-

straint is only a temporary power constraint for this FD SINR balancing sub-

problem. Indeed, M in P5.2 can be any arbitrary positive real value. This

will not have an impact on the solution of the original optimisation problem

P5.1, due to the existence of the scaling factor f that constrains the power

of the precoded signals. To be more specific, firstly we denote the solution

of the optimisation problem P5.2 with the constraint value p0 = 1 as Z∗ and

w∗k . Then, without loss of generality we consider the optimisation problem

where p0 6= 1, and denote the solution as Ẑ and ŵk. It is then easy to obtain

that the solution for the reconstructed problem is Ẑ = Z∗ and ŵk =
√

p0 ·w∗k .

It is then easy to verify that these two problems return the same received

SINR value. The above explanation therefore clarifies that the constraint∥∥Z−1W
∥∥2

F = p0 is indeed only a temporary power constraint for the SINR

balancing sub-problem and will not have an impact on the solution of the

original problem.

Furthermore, it is shown in [40, 49] that P5.2 is equivalent to the follow-

ing optimisation
P5.3 : max

W
min

k
γk

s.t.
∥∥Z−1W

∥∥2
F ≤ p0

(5.14)

based on the fact that the power constraint is always active for P5.3. Ac-

cordingly, in the following we solve P5.3 instead. Compared to generic FD

SINR balancing problem in [40, 49], the power constraint for P5.3 is on Z−1W

instead of W only. Thanks to the fact that Z−1 is regarded as fixed when op-
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timising W, P5.3 can be solved by either the iterative algorithm in [49] or

the bisection search approach in [40]. In this chapter, we employ the bisec-

tion search method to solve P5.3, based on the fact that SINR balancing and

power minimisation problems are inverse problems [40]. To be more spe-

cific, we first express the power minimisation problem that corresponds to

the SINR balancing problem P5.3 as a SOCP optimisation problem, given by

P5.4 : min
W

p̂

s.t. Ak (W)≤ 0, ∀k ∈K

C (W)≤ 0

(5.15)

where K = {1,2, · · · ,K} and each Ak (W) is given by

Ak (W) =
∥∥WHHHIk

∥∥
F +σ −

√
1+

1
γ0
· [HW]k,k, ∀k ∈K . (5.16)

In (5.16), γ0 is the SINR target for the corresponding power minimisation

problem, and Ik denotes the k-th column in the identity matrix I. Without

loss of generality, we have assumed that [DW]k,k > 0, as a phase rotation on

each wk will not have an impact on the resulting SINR expression. C (W) is

given by

C (W) =
∥∥Z−1W

∥∥
F − p̂, (5.17)

where p̂ is the power variable to be optimised for the corresponding power

minimisation problem. We further denote this power minimisation problem

as P5.4 (γ0). P5.4 is a typical SOCP problem and can be efficiently solved by

power control algorithms or the semidefinite optimisation [39].

As the SINR balancing optimisation P5.3 and the power minimisation

problem P5.4 (γ0) are inverse problems, we can solve P5.3 by iteratively solv-

ing the corresponding power minimisation problems for different SINR tar-

get γ0. Due to the inversion property, if P5.4 (γ0) = p0, then its solution is

also the optimal solution for P5.3 [40]. Based on the above description, we
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Algorithm 5.1 Bisection Search Algorithm for Solving P5.3

input : H, Z−1, γmax, γmin, p0
output : W
repeat
γ0← γmax+γmin

2 ;
p̂ = P5.4 (γ0);
if p̂2 ≤ p0 then

γmin← γ0;
else

γmax← γ0;
end if
until p̂2 = p0
Output W.

present the following algorithm to efficiently solve P5.3, summarised in Al-

gorithm 5.1, where γmin and γmax define the range of the target SINR.

5.3.2 Solving zL When W is Fixed

When W is fixed, P5.1 is transformed into

P5.5 : max
zL

min
k

γk

s.t. ℜ(zLi)≥ 0, ∀i ∈N

f =
∥∥Z−1W

∥∥
F

(5.18)

Based on the expression of γk in (5.11), it is observed that the noise amplifi-

cation factor f is the only variable when W is fixed. Therefore, P5.5 is equiv-

alent to the following optimisation problem that minimises the noise ampli-

fication factor f , given by

P5.6 : min
zL

∥∥Z−1W
∥∥

F

s.t. ℜ(zLi)≥ 0, ∀i ∈N

(5.19)



124 Chapter 5. Mutual Coupling Exploitation for Multiuser Systems

To solve P5.6, we first study the inverse of the MC matrix Z−1. Based on

(5.3), Z−1 is further obtained as

Z−1 =
{
[zA · I+diag(zL)] [ZM +diag(zL)]

−1
}−1

= [ZM +diag(zL)] ·diag(zT ) ,

(5.20)

where

zi = zA + zLi, ∀i ∈N , zT =

[
1
z1
,

1
z2
, ...,

1
zNt

]T

. (5.21)

By expanding (5.20), Z−1 can be expressed as

Z−1 =



1
zM1
z2

zM2
z3

· · ·
zMNt−1

zNt
zM1
z1

1
zM1
z3

. . . ...
zM2
z1

zM1
z2

. . . . . . zM2
zNt... . . . . . . . . . zM1
zNt

zMNt−1
z1

· · · zM2
zNt−2

zM1
zNt−1

1


. (5.22)

By further introducing

θi =
zM1

zi
, ∀i ∈N , (5.23)

Z−1 in (5.22) can be decomposed into

Z−1 = BΘΘΘ+ I, (5.24)

where ΘΘΘ is a diagonal matrix and ΘΘΘ = diag
(
[θ1,θ2, · · · ,θNt ]

T
)

. The matrix B

is given by

B =



0 1
zM2
zM1

· · ·
zMNt−1

zM1

1 0 1 . . . ...
zM2
zM1

1 . . . . . . zM2
zM1... . . . . . . . . . 1

zMNt−1
zM1

· · · zM2
zM1

1 0


. (5.25)
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Based on (5.21) and (5.23), we express the load impedance zLi as

zLi =
zm1

θi
− zA, ∀i ∈N , (5.26)

and the constraint that ℜ(zLi)≥ 0 can be further transformed into

ℜ

(
zm1

θi

)
≥ℜ(zA) ⇒ ℜ(θi)ℜ(zm1)+ℑ(θi)ℑ(zm1)≥ |θi|2 ·ℜ(zA) . (5.27)

(5.27) is convex, where we note that a practical antenna has ℜ(zA) > 0 [63].

By substituting (5.24) and (5.27) into P5.6, the optimisation problem is finally

formulated as

P5.7 : min
ΘΘΘ

‖BΘΘΘW+W‖2

s.t. ℜ(θi)ℜ(zm1)+ℑ(θi)ℑ(zm1)≥ |θi|2 ·ℜ(zA) , ∀i ∈N

(5.28)

which is a least-squares problem and can be efficiently solved with convex

optimisation tools. Subsequently, the optimal load value zLi can be obtained

by (5.26), and the resulting optimal mutual coupling matrix is obtained as

Z∗ = (BΘΘΘ
∗+ I)−1. (5.29)

5.3.3 Joint Iterative Algorithm

Based on the above description, the proposed joint AD precoding method

can be obtained by alternately optimising W and zL until convergence or a

maximum number of iterations is reached. We summarise the alternating

optimisation algorithm for the joint scheme in Algorithm 5.2, where z0
L is

the initial load impedance vector, and Nmax denotes the maximum iteration

number. δ is a variable that represents the convergence accuracy, which is

defined as δ =
∥∥∥W(n+1)−W(n)

∥∥∥
F
, or equivalently δ =

∥∥∥Z(n+1)−Z(n)
∥∥∥

F
. δth

defines the accuracy threshold.
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5.3.4 Convergence Discussion
It is observed in Algorithm 5.2 that the two sub-problems have the same

objective function P5.1 within each iteration, which is then transformed into

equivalent sub-problems P5.3 and P5.5. Moreover, the sub-problem P5.3 to

obtain W(n) and the sub-problem P5.5 to obtain Z(n) are optimally solved by

Algorithm 5.1 and P5.7 for that iteration, respectively. Therefore, Algorithm

5.2 is guaranteed to converge [69, 121], and it is easy to observe that when the

global optimum is reached, f ∗ =
√

M. More importantly, it is found that the

convergence speed of the proposed joint algorithm is fast, which is shown

below in Fig. 5.2, where we depict the value of both f and δ with respect to

the increasing iteration number n, and for simplicity we assume that M = 1.

‘SB A-D Joint’ denotes the proposed joint AD SINR balancing optimisation.

In Fig. 5.2, the initial antenna load vector z0
L is zLi = 50Ω, ∀i∈N , γmin = 0, and

γmax is selected as γmax =
max(‖hk‖2)

σ2 [40]. It can be observed that the proposed

algorithm is convergent within n = 4 iterations.

Algorithm 5.2 Joint Iterative Algorithm for Solving P5.1

input : H, z0
L, Nmax, δth

output : P∗
n = 0;
Z0 = Z

(
z0

L
)
, W0 = 0;

while n≤ Nmax and δ ≥ δth do
Obtain W(n+1) by Algorithm 5.1 with Z(n);
Obtain Z(n+1) by solving P5.7 with W(n+1);
δ =

∥∥∥W(n+1)−W(n)
∥∥∥;

n = n+1;
end while
W∗ = W(n), Z∗ =

(
BΘΘΘ

(n)+ I
)−1

;
Calculate f ∗;
Output P∗ = 1

f ∗ · (Z
∗)−1W∗.

5.4 Low-Complexity Decoupled Approach
Due to the fact that Z−1 and W need to be updated alternately, the pro-

posed joint algorithm above involves considerable computational costs. In
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Figure 5.2: Convergence speed of the joint iterative approach, Nt = K = 4, Nmax = 6,
δth = 10−3

this chapter, we further explore a low-complexity alternative to the joint op-

timisation above, where a more practical decoupled method is introduced.

In practice, closed-form ZF and RZF precoding approaches are widely em-

ployed due to their complexity benefits. While the joint AD precoding

method in Chapter 5.3 does not directly apply to these closed-form ap-

proaches, the decoupled method introduced in this chapter enables the com-

bination of the MC exploitation with such closed-form precoders, which

leads to a much reduced computational cost.

For the proposed decoupled technique, we still construct P as in (5.8),

and we denote Wd as the digital precoding matrix for the decoupled ap-

proach. In the decoupled design, Wd is firstly obtained with conventional

FD precoding approaches assuming no coupling effect, and subsequently we

design zL to minimise the noise amplification factor f . With the proposed de-

coupled approach, the computational complexity is greatly reduced, while it

will be observed that there is only a slight performance loss for SINR balanc-

ing optimisation, compared to the joint approach. The decoupled precoding

method is summarised in Algorithm 5.3 below.
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Algorithm 5.3 Decoupled AD Precoding Approach
input : H
output : P∗d

Obtain
{

W∗d by P5.2 with Z = I, for SINR balancing
W∗d = HH(HHH)−1

, for closed− form ZF
;

Obtain Z∗ by solving P5.7 with the obtained W∗d ;
Calculate f ∗d ;
Output P∗d = 1

f ∗d
·
(
Z∗d
)−1W∗d .

5.5 Sequential Search Method for Quantised

Loads

In the above sections, while we have considered the realistic constraint for

the varactors where ℜ(zLi)≥ 0, ∀i∈N , this constraint is from the perspective

of enabling the radiation of the antenna array. In optimisation problems P5.1

- P5.7, we have assumed an infinite precision for the varactors, i.e., each

zLi can have any arbitrary continuous values. This assumption may not be

feasible in practical deployments, where hardware components with finite

precision are used. Therefore, we proceed to consider a more practical case

where only quantised versions of the analog loads are available, and present

a practical sequential search method based on the greedy algorithm for the

analog precoding optimisation. In this case, the constraint for the tunable

load is modified into

zLi ∈U , ∀i ∈N , (5.30)

where U denotes the set that consists of quantised load values with a finite

number. For the precoding method with limited-precision antenna loads,

the optimisation problem P5.6 in (5.19) for zL can be reformulated as

P5.8 : min
zL

∥∥Z−1W
∥∥

F

s.t. zLi ∈U , ∀i ∈N

(5.31)
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We denote each potential load value in U as zQ
m, and we further denote DR

and DI as the total number of potential values for the real and imaginary

part of each zQ
m ∈ U , respectively. Accordingly, the cardinality of U can be

obtained as

card (U ) = DRDI = D, (5.32)

based on which we express the real and imaginary part of each zQ
m ∈U as

ℜ

(
zQ

m

)
∈
{

zℜ
1 ,z

ℜ
2 , · · · ,zℜ

DR

}
, ℑ

(
zQ

m

)
∈
{

zℑ

1 ,z
ℑ

2 , ...,z
ℑ

DI

}
, ∀m ∈N , (5.33)

where the quantised potential load values zℜ
n and zℑ

n in (5.33) can be obtained

as
zℜ

n =
n ·Rupper

DR
, ∀n ∈ {1,2, · · · ,DR} ;

zℑ
n = Ilower +

n · (Iupper− Ilower)

DI
, ∀n ∈ {1,2, · · · ,DI} .

(5.34)

In (5.34), Rupper denotes the upper bound for the real part of each zQ
m ∈ U

where the constraint that ℜ(zLi)≥ 0, ∀i ∈N has already been included im-

plicitly, while Ilower and Iupper denote the lower bound and upper bound for

the imaginary part of zQ
m ∈U . We note that here we also constrain the imag-

inary part of each zLi in a finite range for practical consideration.

It is observed that the optimal quantised load vector can only be ob-

tained via an exhaustive search over a total number of D possible load val-

ues for each antenna element, which is highly computationally expensive,

especially when the number of transmit antennas Nt is large or the precision

of the tunable loads is high. While it is also feasible to quantise the opti-

mal load values obtained by the optimisation, this approach still requires

solving an optimisation problem, which may also be computationally ineffi-

cient in practice. Accordingly, to obtain a feasible solution efficiently, in this

chapter we propose a low-complexity sequential search approach based on a

greedy algorithm. To be specific, for the load value of each antenna element,

we sequentially select the load value that provides the highest performance



130 Chapter 5. Mutual Coupling Exploitation for Multiuser Systems

improvements, which is achieved by selecting the load value that generates

the lowest value of f , while assuming the loads on other antenna elements

fixed. The proposed scheme is summarised in Algorithm 5.4, which can be

employed upon the joint precoding approach in Chapter 5.3 or the decou-

pled method in Chapter 5.4 to efficiently obtain a feasible quantised load

value for each antenna element.

Remark on the Performance of the Sequential Search Approach:

While we do not guarantee that the proposed sequential search scheme can

achieve the optimal performance, our proposed approach indeed offers a

low-complexity solution that achieves performance gains over fixed cou-

pling effect for the practical scenarios, where quantised tunable loads are

employed and the exhaustive search is inapplicable due to the high com-

plexity. Moreover, it will be further shown in the numerical results that for a

moderate-size MIMO system with a small quantisation level D, the proposed

approach indeed achieves a close-to-optimal performance.

Furthermore, to numerically show the complexity benefits of the pro-

posed algorithm, we evaluate the computational costs in terms of the total

number of possible load combinations to visit for both the exhaustive search

and the proposed sequential search, obtained as

Nexhaustive = DNt = (DRDI)
Nt ,

Nsequential = DNt = DRDINt .
(5.35)

An illustrative example is presented in Table 5.1 with some typical values of

the antenna number and quantisation level, where we can observe a signifi-

cant complexity gain for the proposed sequential search method, compared

to the exhaustive search scheme which requires a high computational cost.
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Algorithm 5.4 Sequential Search Scheme for Quantised Loads based on the
Greedy Algorithm

input : z0
L, U , W

output : Z∗
Obtain Z0 with z0

L by (5.3), and f0 =
∥∥Z−1

0 W
∥∥

F ;
for m = 1 : Nt do

zt = z0
L (m), zL = z0

L;
for n = 1 : D do

zL (m)← zQ
n ;

Obtain Z with zL by (5.3), and f =
∥∥Z−1W

∥∥
F ;

if f < f0 then
f0← f , zt ← zQ

n ;
end if

end for
zL (m)← zt ;

end for
Obtain Z∗ with zL by (5.3).

Exhaustive Search Scheme

Antenna Number
Quantisation Level

2 4 6 8 10
4 256 6.6×104 1.7×106 1.7×10 1×108

8 6.6×104 4.3×109 2.8×1012 2.8×1014 1×1016

16 4.3×109 1.8×1019 8×1024 7.9×1028 1×1032

Sequential Search Scheme

Antenna Number
Quantisation Level

2 4 6 8 10
4 16 64 144 256 400
8 32 128 288 512 800
16 64 256 576 1024 1600

Table 5.1: Number of load combinations to visit for the exhaustive search and pro-
posed sequential search scheme

5.6 Performance Analysis and Optimality for

Closed-Form Precoding Methods

In this chapter, we conduct performance analyses in terms of the received

SINR for imperfect CSI, followed by the optimality demonstration of the pro-

posed MC exploitation for closed-form precoders in imperfect CSI.
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5.6.1 Estimation of H

We observe that the BS needs to obtain H to employ the proposed ap-

proaches. At the BS, the CSI is obtained with channel estimation techniques

based on the duplex mode, which has been introduced in Chapter 2.3.4. Re-

gardless of which duplex mode is employed, we can only obtain D = HZ

with standard channel estimation methods. Therefore, first we need to ex-

tract H from HZ to facilitate the proposed approaches. A similar approach

to Chapter 4.5.1 can be employed to extract H from the channel matrix D

by estimating the channel with a reference coupling matrix Z0, and we omit

the details in this chapter for brevity. With Z0 known to the BS, H can be

extracted from HZ0 and expressed as

H = DZ−1
0 . (5.36)

With H obtained, the proposed approaches can be employed during data

transmission.

5.6.2 Perfect CSI

In the case of perfect CSI, the received SINR of user k for SINR balancing can

be obtained by (5.11), based on which we obtain the sum rate as

R =
K

∑
k=1

log2 (1+ γk). (5.37)

We proceed to calculate the received SINR for imperfect CSI, where we em-

ploy the statistical CSI error model as an example, and the extension to the

norm-bounded CSI can be similarly obtained.
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5.6.3 Imperfect CSI - Statistical CSI Errors

Based on (5.36) and the imperfect CSI model for TDD systems in (2.53),

which is described in Chapter 2.3.4, we can further express H as

H = α ·
(
Ĥ+EZ−1)+QZ−1

= α · Ĥ+(α ·E+Q)Z−1.
(5.38)

We proceed to study the received SINR for imperfect CSI. Based on (5.1)

and (5.38), the received signal vector ŷ with the proposed approach can be

expressed as

ŷ = Dx̂+n

=
[
α · Ĥ+(α ·E+Q)Z−1]Z · 1

f̂
·Z−1Ŵs+n

=
α

f̂
· ĤŴs+

1
f̂
· (α ·E+Q)Z−1Ŵs+n,

(5.39)

In the presence of statistical CSI errors, each receiver needs to scale the

received signal by f̂
α

, and the resulting received symbol vector can be ex-

pressed as

r̂ = ĤŴs+
(

E+
1
α
·Q
)

Z−1Ŵs+
f̂
α
·n. (5.40)

The second term in (5.40) introduces an additional noise term due to the CSI

estimation errors. We define the equivalent noise term as

n̂ =

(
E+

1
α
·Q
)

Z−1Ŵs+
f̂
α
·n. (5.41)

Based on the derivation in [34], it is shown that the distribution of n̂ condi-

tioned on Z and s is i.i.d. Gaussian with zero mean, i.e. n̂∼CN(0,υ · I), with

the equivalent noise power given by

υ =

[
η +

(
1−α2)

α2

]
· f̂ 2 +

f̂ 2σ2

α2 =
f̂ 2

α2

[
α

2
η +

(
1−α

2)+σ
2] , (5.42)
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where we note that x̂ is normalised, which leads to ‖x̂‖2
F = 1 and

∥∥Z−1Ŵs
∥∥2

F =

f̂ 2. It is further obtained that the derivation in (5.39)-(5.42) is independent

of the precoding approaches applied in the digital domain. Accordingly, we

can express the resulting received SINR for the k-th user in the presence of

statistical CSI errors as

γ̂k =

∣∣ĥkŵ∗k
∣∣2

K
∑

i 6=k

∣∣ĥkŵ∗i
∣∣2 + f̂ 2

α2 [α2η +(1−α2)+σ2]

, (5.43)

and the sum rate can be calculated by (5.37) via the obtained γ̂k. Based on the

observation in (5.43), we note the optimality of the proposed AD techniques

for closed-form digital precoding approaches with imperfect CSI.

Optimality for Closed-Form Precoding Methods: When closed-form

precoding methods are employed in the digital domain, each ŵ∗k , ∀k ∈ K

in (5.43) is only dependent on the CSI and is fixed. The received SINR of

the k-th user with statistical CSI errors is therefore only relevant to the noise

amplification factor f̂ . For the proposed analog precoding approaches that

minimise the noise amplification factor f̂ , the power of the equivalent noise

vector n̂ for the imperfect CSI scenarios is also minimised, which means that

the solutions obtained via P5.1 - P5.8 assuming perfect CSI are also optimal

for the corresponding cases in the presence of statistical CSI errors, and the

proposed methods can be directly extended to such cases.

5.6.4 Imperfect CSI - Norm-Bounded CSI Errors

The norm-bounded CSI error model for FDD systems is given in (2.56), as

described in Chapter 2.3.4. The optimality for closed-form precoding ap-

proaches trivially extends to the case of norm-bounded CSI errors when

closed-form precoding approaches are employed in the digital domain. In

such case, instead of obtaining the exact analytical SINR expression, we can

derive the lower bound of the received SINR based on a similar derivation
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in (5.39)-(5.43), given by

γ̂k ≥
∣∣ĥkŵ∗k

∣∣2
K
∑

i6=k

∣∣ĥkŵ∗i
∣∣2 + f̂ 2σ2 +δk

= γ̂
lower
k , ∀k ∈K . (5.44)

5.7 Proposed Robust Precoding for SINR Optimi-

sation

In this chapter, the robust designs for SINR optimisation for both the statis-

tical CSI error and the norm-bounded CSI error model are proposed.

5.7.1 Robust Design - Statistical CSI Errors

Based on the derivation in (5.39)-(5.43), the received SINR with statistical

CSI errors can be regarded similar to the perfect CSI case with an equivalent

noise term n̂. It is further noted that the power of n̂ is independent of the

coupling matrix Z. Therefore, for the robust SINR balancing optimisation

with statistical CSI errors, instead of employing the noise power of n, we

apply the power of the equivalent noise n̂ for Ak (W) in (5.15), and we express

Âk (W) for the robust precoding as

Âk (W) =
∥∥WHHHIk

∥∥
F + σ̂ −

√
1+

1
γ0
· [HW]k,k, ∀k ∈K , (5.45)

where σ̂ denotes the power of the equivalent noise n̂ before rescaling and

can be obtained based on (5.42) as

σ̂ =

√
1

α2 [α
2η +(1−α2)+σ2]. (5.46)

By substituting Âk (W) obtained in (5.45) into P5.4, the robust SINR balanc-

ing optimisation with statistical CSI errors can be solved.
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5.7.2 Robust Design - Norm-Bounded CSI Errors

We further consider the robust SINR optimisation with norm-bounded CSI

errors, which is formulated into the following optimisation problem

P5.9 : max
ẑL,Ŵ

min
k

γ̂k

s.t. ℜ(ẑLi)≥ 0, ∀i ∈N

γ̂k =
|hkŵk|2

K
∑

i6=k
|hkŵi|2 + f̂ 2σ2

, hk ∈Hk, ,∀k ∈K

(5.47)

Similar to the case of perfect CSI, we consider the alternating optimisation

approach, and in the following we first assume a fixed mutual coupling

matrix and solve the robust SINR optimisation for imperfect CSI by solv-

ing a sequence of equivalent power minimisation problems with the bisec-

tion search approach [122, 123]. Accordingly, in the following we focus on

solving the corresponding robust power minimisation problem for norm-

bounded CSI errors, and the optimal precoding matrix for the robust SINR

balancing can be obtained via the bisection search in Algorithm 5.1. For

simplicity and without loss of generality we assume p0 = 1, and the corre-

sponding power minimisation problem for P5.9 can be formulated into

P5.10 : min
Ŵ

p̂

s.t. p̂≥
∥∥Ẑ−1Ŵ

∥∥2
F

|hkŵk|2
K
∑

i 6=k
|hkŵi|2 +σ2

≥ γ̂0, hk ∈Hk, ∀k ∈K

(5.48)

Note that the optimisation problem P5.10 contains infinite number of con-

straints and is difficult to be directly solved. Therefore, we propose to con-

sider the worst-case received SINR for user k within the uncertainty region
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Hk, defined as

S̃INRk = min
hk∈Hk

|hkŵk|2
K
∑

i6=k
|hkŵi|2 +σ2

, (5.49)

and the optimisation problem P5.10 is equivalent to

P5.11 : min
Ŵ

p̂

s.t. p̂≥
∥∥Ẑ−1Ŵ

∥∥2
F

S̃INRk ≥ γ̂0, hk ∈Hk, ∀k ∈K

(5.50)

With the definition of S̃INRk and Hk, we further denote

Tk =
1
γ̂0

ŵkŵH
k −∑

i 6=k
ŵiŵH

i , (5.51)

and the constraint that S̃INRk ≥ γ̂0 can be further transformed into

hkTkhH
k −σ

2 ≥ 0

⇒
(
ĥk + ek

)
Tk
(
ĥk + ek

)H−σ
2 ≥ 0

⇒ ekTkeH
k + ek

(
TkĥH

k
)
+
(
TkĥH

k
)HeH

k + ĥkTkĥH
k −σ

2 ≥ 0, ∀ekeH
k ≤ δ

2
k

(5.52)

Lemma: S-procedure [124]: Let T ∈CNt×Nt be a complex Hermitian ma-

trix, b ∈ CNt×1 and a scalar c. For a vector v ∈ C1×Nt , the following condition

vTvH +vb+bHvH + c≥ 0, ∀‖v‖2 ≤ r2 (5.53)

is true if and only if there exists a non-negative value t, such that the matrix

U given below

U =

 T+ t · I b

bH c− tr2

 (5.54)
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is positive semi-definite. By employing the S-procedure, (5.52) can be trans-

formed into a positive semi-definite form, expressed as

 Tk + tk · I TkĥH
k

ĥkTH
k ĥkTkĥH

k −σ2− tkδk

� 0, ∀k ∈K (5.55)

where tk ≥ 0 is an introduced auxiliary variable. By defining Xk = ŵkŵH
k ,

∀k ∈K ,
∥∥Ẑ−1Ŵ

∥∥2
F can be transformed into

∥∥Ẑ−1W
∥∥2

F = tr
{

Z−1ŴŴH(Z−1)H
}

= tr
{

Z−1 [ŵ1, ŵ2, ..., ŵK] [ŵ1, ŵ2, ..., ŵK]
H(Z−1)H

}
=

K

∑
k=1

tr
{

Z−1Xk
(
Z−1)H

}
.

(5.56)

Then, with (5.55) and (5.56), P5.11 can be recast as

P5.12 : min
Xk,tk

p̂

s.t. p̂≥
K

∑
k=1

tr
{

Z−1Xk
(
Z−1)H

}
Tk =

1
γk

Xk−∑
i6=k

Xi, ∀k ∈K Tk + tk · I TkĥH
k

ĥkTH
k ĥkTkĥH

k −σ2− tkδ

� 0, ∀k ∈K

tk ≥ 0, Xk � 0, rank(Xk) = 1, ∀k ∈K

(5.57)

By dropping the rank constraint rank(Xk) = 1, P5.12 becomes a standard

semidefinite programming (SDP) optimisation and can be efficiently solved

with existing optimisation tools. Furthermore, it has been shown in [125]

that the optimal solution obtained satisfies rank
(
X∗k
)
= 1, when the uncer-

tainty bound δk is small. In this case, the exact optimal solution for the origi-

nal problem P5.12 can be obtained by employing the eigenvalue decomposi-

tion. On the other hand, if rank
(
X∗k
)
> 1, randomisation techniques in [126]
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or rank reduction approaches in [127] that are widely adopted can be em-

ployed to obtain a feasible rank-one solution.

Specific to our optimisation problem, after the digital precoder is ob-

tained via the bisection search scheme with Algorithm 5.1, the optimisation

on ẑL can be employed by incorporating P5.12 into the joint and decoupled

precoding approach, respectively. For the joint scheme, Ŵ(n+1) within each

iteration is obtained by solving P5.12 with a fixed MC matrix Z(n), where we

note that an iterative design in Algorithm 5.2 is still needed. As for the de-

coupled scheme, the digital precoders are first obtained by solving P5.12

with Z = I, and the optimal load values that minimise the total transmit

power are obtained by solving P5.7. In the case of quantised analog load val-

ues, the sequential search algorithm in Chapter 5.5 can be directly applied

to the robust precoding methods. With the above approaches, the robust

SINR optimisation with MC exploitation for norm-bounded CSI errors can

be solved.

For the case where a fixed coupling matrix is considered with norm-

bounded CSI errors, we obtain

dk =
(
ĥk + ek

)
Z0 = d̂k + ekZ0

= d̂k + êk,
(5.58)

where êk denotes the channel error vector for the fixed MC effect. Based on

the sub-multiplicativity property of the norm, we can further obtain

‖êk‖F = ‖ekZ0‖F ≤ ‖ek‖F ‖Z0‖F ≤
√

δk · ‖Z0‖F =

√
δ̂k. (5.59)

Therefore, for the conventional case with a fixed coupling matrix, the opti-

mal precoding matrix is obtained by solving P5.12 with δ̂k in (5.59), which

guarantees that the SINR requirement is met.
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5.8 Numerical Results
We employ Monte Carlo simulations to evaluate the performance of the pro-

posed precoding methods in this chapter. Since we have assumed [HW]k,k >

0, ∀k ∈K in (5.16), the obtained precoders can be directly applied to eval-

uate the BER performance. The system is operating at 2.6GHz and QPSK

modulation is applied for the BER evaluation. The simulated channel is gen-

erated based on Chapter 2.3.2 and the semi-correlated channel is assumed

with Np = 50 DoDs and ϕ = π
/

8. We assume a fixed normalised antenna

spacing d = 0.25 at the transmitter, which is equivalent to d = λ
/

4. The initial

load impedance vector z0
L is zLi = 50Ω, ∀i ∈N . When quantised load values

are considered, we assume Rupper = 100Ω, Ilower =−100Ω, and Iupper = 100Ω

throughout the simulations as representative values, while the tunable range

in practical devices can be larger. For the digital SINR balancing optimisa-

tions, γmin = 0 and γmax is selected as γmax =
max(‖hk‖2)

σ2 . The above parameters

remain constant throughout the simulations, unless otherwise stated.

For clarity, the following abbreviations for SINR balancing optimisation

are used

• ‘SB with MC’: FD precoding with a fixed MC effect;

• ‘SB no MC’: FD precoding assuming no MC effect (as a reference only);

• ‘SB A-D Joint’: the proposed joint precoding approach with continu-

ous load values;

• ‘SB A-D Decoupled’: the proposed decoupled method with continu-

ous load values;

• ‘SB A-D Sequential’: the proposed sequential search algorithm with

quantised load values;

• ‘SB A-D Exhaustive’: the exhaustive search with quantised load values.

As a comparison, we also present the results for the closed-form ZF-based

approaches, where we note that the ZF approach is only applicable with
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Figure 5.3: BER v.s. transmit SNR, Nt = K = 4, QPSK, d = 0.25, perfect CSI

the decoupled MC exploitation method, and the abbreviations for ZF-based

approaches are denoted in a similar way.

5.8.1 Perfect CSI

Fig. 5.3 compares the BER performance of the proposed approaches with

conventional approaches with fixed coupling effect in perfect CSI. It is ob-

served that for both ZF and SINR balancing, conventional schemes with

fixed MC achieve the worst BER performance. For the proposed AD method,

the joint precoding achieves the best BER performance with the highest com-

plexity, as the load impedances and the precoders are jointly optimised.

For the decoupled approach, while its performance is worse than the joint

scheme, it is still superior to the conventional cases with or without a fixed

coupling effect. Moreover, in line with existing results, optimisation-based

SINR balancing precoding methods achieve an improved performance over

ZF.

Fig. 5.4 presents the BER with respect to the quantisation level at

SNR=20dB with the employment of quantised antenna loads, where for sim-

plicity we assume DR =DI . When DR =DI = 1, the case with quantised loads

is identical to the case with fixed MC. For both ZF and SINR balancing pre-
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coding methods, it is shown that the coupling effect can be beneficial with

quantised tunable loads. More importantly, we have observed that for the

considered scenario, the proposed sequential search scheme achieves a sim-

ilar performance to the optimal exhaustive search approach, with a greatly

reduced computational cost. The BER result for the exhaustive search is dif-

ficult to obtain when the quantisation level is larger than 4, due to the over-

whelming computational cost. It is also observed that a larger quantisation

level and the resulting larger size of U leads to an improved performance

for the proposed sequential search algorithm.

Since the MC effect is highly relevant to the antenna spacing, in Fig. 5.5

we depict the BER performance with the increasing antenna spacing d. As

can be observed, with a smaller antenna spacing, the performance gain of

the proposed scheme over the case with fixed coupling is more significant,

which is due to the stronger coupling effect that can be further exploited.

Moreover, for all approaches, we have observed an improved BER with a

larger antenna spacing, which is due to the reduced spatial correlation effect.

Fig. 5.6 presents the achievable sum rate for each precoding approach,
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where the channel sum capacity is given as

C = E
{

sup
G∈A

log2

[
det
(

I+
1

σ2 HHGH
)]}

, (5.60)

where sup denotes the supremum function and A is the set of diagonal K×K

matrices with non-negative elements that ensure tr{G}= 1. When uniform

transmit power allocation is assumed, G =
(
1
/

K
)
· I. It can be seen from
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Fig. 5.6 that both the joint and the decoupled approach offer a better rate per-

formance compared to conventional digital-only precoding with fixed MC.

At the low SNR regime, a rate gain as large as 7 dB can be observed for all

SINR balancing based precoding approaches over ZF-based methods.
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Figure 5.7: Average execution time with respect to the number of antennas, Nt = K,
Nmax = 5

In Fig. 5.7, the computational cost of the proposed joint and the decou-

pled approaches is numerically illustrated and compared in terms of the av-

erage execution time. For the joint scheme, Nmax = 5. We observe that the

joint method requires much more execution time than the decoupled ap-

proach to obtain the precoder, and this gap becomes increasingly larger with

the increase in the problem dimension. Nevertheless, it should be noted that

the dominant complexity of the joint scheme is from the SINR balancing pro-

cedure instead of the optimisation on the tunable antenna loads, as observed

from the negligible gap between ‘SB with MC’ and ‘SB A-D Decoupled’. It

is also observed that ‘ZF A-D’ technique requires the least complexity due

to a closed-form precoder in the digital domain.

5.8.2 Imperfect CSI - Statistical CSI Errors
Next we present the results for imperfect CSI. We firstly consider the scenar-

ios with statistical CSI errors, where without loss of generality we assume
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Figure 5.8: Analytical results v.s. simulated results for ZF and SINR balancing, Nt =
K = 4, α = 0.995, β=0.1

α = 0.995 and β = 0.1. To validate our analyses on the received SINR, in

Fig. 5.8 the analytical results and simulated results of the received SINR with

perfect CSI and statistical CSI errors are shown respectively. As can be seen,

for both perfect and imperfect CSI cases, a close match between the analytical

and simulated results can be observed.

Fig. 5.9 further shows the sum rate performance of the proposed robust

approaches with statistical CSI errors. Compared to cases with perfect CSI

in Fig. 5.6, all precoding approaches suffer a performance loss due to the

channel estimation errors. At the high SNR regime, due to the existence of

the delay error matrix Q, the sum rate performance is upper bounded. More

importantly, it is observed that the proposed methods that exploit the MC

effect still outperform the conventional digital-only precoding methods in

the case of imperfect CSI, for both ZF and SINR balancing.

5.8.3 Imperfect CSI - Norm-Bounded CSI Errors

We proceed to present the simulation results with norm-bounded CSI errors,

where the channel error coefficient is assumed δk = 0.1, ∀k. In Fig. 5.10, the
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BER performance is shown with the increasing transmit SNR. Compared to

the non-robust approaches that is observed with an error bound at the high

SNR regime, the robust scheme achieves an improved performance. Simi-

larly, we observe that the proposed methods that based on the MC exploita-

tion outperform the conventional cases with fixed coupling effect.
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5.9 Summary
In this chapter, a joint AD optimisation-based precoding that exploits the

coupling effect is proposed. We show that by judiciously picking the load

values of each antenna element, the MC effect can be beneficial and further

improves the system performance. Furthermore, for practical considerations

of computational complexity and hardware imperfections, a low-complexity

decoupled precoding scheme and a sequential search approach are pro-

posed. In the case of imperfect CSI, the optimality is proven for closed-form

precoding approaches, while the robust SINR optimisation methods are fur-

ther proposed. Simulation results validate the performance improvements

by exploiting the MC effect in both perfect and imperfect CSI scenarios.

Both studies in Chapter 4 and Chapter 5 have motivated the use of tun-

able antenna loads to exploit the MC effect in compact multiple-antenna sys-

tems.
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Chapter 6

Downlink Precoding for ESPARs

with Quantised Loads

This chapter is based on our works published in [C4], [C10], [J4].

6.1 Introduction
Our previous studies on the coupling effect focus on the generic compact an-

tenna arrays at the BS, where each antenna element is connected to its own

RF chain. However, the significant hardware burden imposed by the use of

multiple RF chains and the consequent power consumption can be a lim-

itation, especially for the large-scale multiple-antenna systems. Therefore

in this chapter, we focus on the downlink transmission design for a power-

efficient and hardware-efficient compact parasitic-antenna array structure,

known as ESPARs, which has been briefly introduced in Chapter 2.4.1.

As a promising candidate for the future communication systems due to

its benefits in hardware complexity and power consumption, ESPARs have

received increasing research attention in recent years [8]. Single-fed ESPARs

are considered in [78, 79, 131] for spatial multiplexing, where a proof-of-

concept experiment has been further demonstrated in [117] to support the

practical implementation of parasitic-antenna arrays. Specifically, a loading

approach is proposed in [79] to support the multiplexing of two 16QAM

signals, in which the effect of impedance errors is numerically studied. Nev-
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ertheless, it does not mathematically analyse the impedance error effect on

the system performance. In [128], we consider Gaussian impedance errors

for ESPAR-based MIMO systems, and the effect of the impedance errors

is analytically studied. An important result is reported in [22] that sup-

ports an arbitrary precoding for ESPARs by mapping the precoded signals

of conventional MIMO arrays on the currents of the ESPAR arrays. In [132],

MIMO transmission for parasitic arrays is studied, where the convex opti-

misation approach is employed to obtain the load values that satisfy the in-

put impedance constraint for the ESPAR array. In [133], a load modulated

antenna array is proposed as an extension of the parasitic array, and its ap-

plication to massive MIMO is discussed. The combination of ESPARs with

orthogonal frequency-division multiplexing (OFDM) can be found in [134],

where the channel estimation techniques and receiver structures are pro-

posed respectively.

The above existing studies have assumed that each parasitic load has

a continuous value range, and can be tuned to any arbitrary values based

on the desired radiation pattern. This may not be feasible for practical

implementation, since the electronic components implementing the load

impedances (varactors, phase shifters, etc) only take values with finite pre-

cision, as described in Chapter 5.5. This is particularly critical for the appli-

cation of parasitic-antenna arrays, as the radiation pattern of the parasitic-

antenna arrays is controlled by tuning the load impedances of the passive

antennas. Therefore in this chapter, we study practical ESPAR-based MIMO

systems with quantised antenna loads, where we focus on precoding tech-

niques at the transmitter side. The system performance for parasitic-antenna

arrays in realistic scenarios may be degraded due to the following reasons: i)

parasitic load errors due to the quantisation, ii) imperfect CSI due to channel

estimation errors. Therefore, we first study the impact of the mismatch effect

introduced by the quantised loads and imperfect CSI on the system perfor-

mance, where we analytically derive the received SINR and probability of
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error for ZF precoding. It will be mathematically shown that the impedance

errors introduced by the quantisation can be regarded as an additional noise

term that is independent of the transmit SNR, which results in an error floor

observed in the high SNR regime.

To compensate for the performance degradation introduced by quan-

tised loads, we further propose a quantisation-robust method to approxi-

mate the current vector of ESPARs with quantised loads to the ideal current

vector by convex optimisation. We propose to jointly optimise the feeding

voltage and the quantised loads, where it is further proven that any addi-

tional variations in the quantised loads can only lead to an additional per-

formance loss. Therefore, the resulting optimisation problem is reduced to

an optimisation on the feeding voltage only, which is convex and can be

efficiently solved. Specifically, when single-fed ESPARs are considered, a

closed-form solution of the optimal feeding voltage can be obtained, which

leads to an efficient employment of the proposed method without incurring

significantly additional computational cost. Numerical results show that the

proposed quantisation-robust method can compensate for the performance

losses and better approach the performance of ideal parasitic-antenna sys-

tems, which enables the practical implementation of ESPARs with quantised

loads.

For reasons of clarity, we summarise the main contributions of this chap-

ter as:

• For parasitic-antenna systems, we formulate the relationship between

the current vector with quantised loads and the ideal current vector,

based on which we conduct mathematical analyses on the system per-

formance with ZF precoding, for both perfect CSI and imperfect CSI.

It is shown that the quantisation in the loads introduces an additional

noise term that is independent of the transmit SNR, which leads to an

error floor at high SNRs;

• We propose a quantisation-robust approach to approximate the cur-
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rent vector of the practical ESPAR array to the desired signal vector,

such that the performance loss introduced by the quantised loads is

minimised. It is proven that the optimality is achieved by optimising

the feeding voltage only, and the optimal current vector is subsequently

obtained via convex optimisation. Specifically, a closed-form solution

can be derived for single-fed ESPARs.

6.2 System Model
We consider a multi-user scenario in the downlink, where the AP equipped

with an ESPAR antenna array communicates with a total number of K single-

antenna users simultaneously. Based on the proposition in [22, 132], we con-

sider the current vector of the ESPAR array as the system input, and a general

system model that captures the functionality of the parasitic array can be ex-

pressed as

y = Hi+n, (6.1)

where y ∈ CK×1 denotes the received signal vector, H ∈ CK×Nt is the channel

matrix from the current vector to the received signals, i ∈ CNt×1 denotes the

current vector for the parasitic array, n ∈ CK×1 denotes the noise vector and

n∼ CN
(
0,σ2 · I

)
, where σ2 is the noise power.

Channel Model H in ESPARs: In generic MIMO systems, the trans-

mitting and receiving signals are reflected by the amplitudes and phases of

the voltage or current vector. Typically, the channel matrix forms the rela-

tionship between the ‘input voltages’ and the ‘output voltages’. When the

coupling effect is considered, the relationship between the currents and the

feeding voltages is given by (2.58), which is required even in a generic MIMO

system. While the general Ohm’s law is applicable for both conventional ar-

ray and parasitic array, conventional MIMO systems typically assume an an-

tenna spacing of larger than half of the wavelength, such that the coupling

effect can be negligible in practice. In this case, the mutual impedance ma-

trix becomes a diagonal matrix, which leads to Zm = zc · I, where zc denotes
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the common self-impedance to match the voltage source. The current vector

for the conventional MIMO array is obtained as

i0 =
1

z0 + zc
·v0, (6.2)

i.e., the currents on each antenna port are a scaled version of the feeding volt-

ages. Accordingly, the channel that relates the ‘input currents’ and the ‘out-

put voltages’ can be regarded as a scaled version of the conventional channel

matrix, while the statistical properties remain the same. In other words, the

channel model developed for conventional MIMO is also valid to relate ‘in-

put currents’ and ‘output voltages’. Therefore, for the ESPAR-based MIMO

systems where the input is given by (2.59), current channel models can be di-

rectly applied to form the relationship between the ‘input currents’ and ‘out-

put voltages’ for parasitic arrays. Accordingly, a semi-correlated Rayleigh

channel model described in Chapter 2.3.2 is employed in this chapter.

In the downlink transmission of a K×Nt MU-MISO system, a generic

precoded signal vector can be expressed as

x =
1
f
·Ps, (6.3)

where s∈CK×1 is data symbol vector with unit power, and P∈CNt×K denotes

the precoding matrix. f is the scaling factor given by

f = ‖P‖F . (6.4)

To apply precoding for parasitic-array systems, the precoded signal vector

is mapped to the antenna current vector [22, 132], i.e.,

i = x =
1
f
·Ps. (6.5)



154 Chapter 6. Downlink Precoding for ESPARs with Quantised Loads

Then, (6.1) is transformed into

y =
1
f
·HPs+n. (6.6)

With this approach, ESPARs can form the same transmit signal and radiate

as conventional MIMO, by setting the feeding voltage and the loads as cal-

culated based on (2.62).

6.3 Performance Analysis with Quantised Loads

and Imperfect CSI
In this chapter, we first introduce the quantisation model in the tunable an-

tenna loads, followed by the performance analyses in both perfect CSI and

imperfect CSI.

6.3.1 Parasitic Arrays with Quantised Loads

It is observed from (2.62) that the calculation of each tunable load and the

feeding voltage is based on the assumption that each load on the para-

sitic elements can be tuned to any arbitrary continuous values, i.e., infinite-

precision tunable loads are assumed. Nevertheless, this is difficult to im-

plement in practice, and in most cases quantised loads of finite precision

are employed due to the realistic hardware implementation [135, 136, 137].

Therefore in this chapter, we study the impact of the quantisation in each

tunable load on the system performance of ESPARs. We express the value

of each quantised load as

ẑm = zm + eL
m, ∀m ∈M , (6.7)

where M = {N +1,N +2, · · · ,Nt}. In (6.7), ẑm denotes the quantised load

value at the m-th passive antenna element, zm denotes the ideal load value

that forms the desired radiation pattern, and eL
m denotes the error in the load

value due to quantisation. For the quantised loads, we denote D as the quan-
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tisation level for both the real part and imaginary part, based on which we

obtain the potential values of the quantised loads, given by

ẑm = pmD+ j ·qmD, pm,qm ∈ {0,±1,±2, ...} . (6.8)

Due to the quantisation, the impedance error eL
m for each tunable load can

be regarded as a norm-bounded variable, where the bound is obtained as

∣∣eL
m
∣∣2 ≤ (D

2

)2

+

(
D
2

)2

=
D2

2
, ∀m ∈M . (6.9)

6.3.2 Analysis - Quantised Loads, Perfect CSI

Before we study the effect of quantisation on the system performance of ES-

PARs, we first characterise the semi-correlated channel H, where for simplic-

ity we only consider the Rayleigh components gk. We further assume that

a constant steering matrix A is employed at the BS. Based on (2.47) and the

fact that transposition operation does not change the variable distribution,

we obtain

hT
k = (gkA)T = AT gT

k , (6.10)

where AT ∈ CNt×M and gT
k ∈ CM×1.

LLLeeemmmmmmaaa: For a random variable vector z∼CN(0,Kz), for the linear trans-

formation y = Bz, we have y∼ CN
(
0,BKzBH) [138].

Based on the lemma above, we obtain that the elements of hk also follow

a normal distribution with zero mean, where the covariance matrix is given

by

ChT
k
= AT(AT)H

= AT · con j (A) . (6.11)

With perfect CSI, consider each tunable load value with error eL
m as in

(6.7), and the current vector in (2.59) with quantised loads can be rewritten
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as
î = [diag(ẑL)+ZM]−1vs

= [diag(zL)+El +ZM]−1vs

= (ZT +El)
−1vs.

(6.12)

In (6.12), ẑL is the quantised load vector and we denote

EL = diag
{[

01×N ,eL
N+1,e

L
N+2, · · · ,eL

Nt

]T} (6.13)

as the impedance error matrix, where we note there are no impedance errors

for active antenna elements as they employ a fixed load z0. In ideal cases

where the parasitic loads with continuous values are employed, the feeding

voltages on the active elements can be calculated as (2.62), which remain

constant in the presence of impedance errors. This leads to

(ZT +El) î = ZT i. (6.14)

With some further transformations on (6.14), we can formulate the relation-

ship between the current vector with quantised antenna loads and the ideal

current vector, given by

î = (ZT +El)
−1ZT i

= (ZT +El)
−1 (ZT +El−El) i

= i− (ZT +El)
−1Eli.

(6.15)

Accordingly, the received signal vector in the presence of quantisation errors

can be obtained by substituting (6.15) into (6.1), expressed as

ŷ = Hî+n

= H
[
i− (ZT +El)

−1Eli
]
+n

= Hi−H(ZT +El)
−1Eli+n

= Hi+nl +n.

(6.16)
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Compared to (6.1), the second term nl is introduced by the impedance errors

due to quantisation, which can be regarded as an additional noise term that

is independent of the transmit SNR. We define the equivalent noise term

ne
∆
= nl +n =−H(ZT +El)

−1Eli+n, (6.17)

where we note that the errors here are introduced by quantisation in the load

impedances, and therefore the AP has the knowledge of the error matrix El .

Based on (6.17), it is observed that ne conditioned on ZT , El and i follows an

i.i.d. Gaussian distribution with zero mean [34], where the equivalent noise

power for each user is given by

υ = ωζ
2 +σ

2. (6.18)

In (6.18), ω = tr{CH}, ζ =
∥∥∥(ZT +El)

−1 El

∥∥∥
F

represents the mismatch effect

introduced by the quantisation. The current vector is equal to the normalised

transmit signal vector, and accordingly we have ‖i‖2
F = 1.

The above derivation is independent of the precoding methods em-

ployed at the AP. To obtain a tractable expression of the received SINR

and the resulting analytical probability of error, in the following we assume

closed-form ZF precoding at the AP, where based on (6.5) the current vector

can be expressed as

i =
1
f
·HH(HHH)−1s, (6.19)

and the scaling factor f =
√

tr
{
(HHH)−1

}
. The received signal vector with

quantised loads is obtained as

y =
1
f
·HHH(HHH)−1s+ne

=
1
f
· s+ne,

(6.20)
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and the resulting received SNR is given by

γk =
1

f 2 (ωζ 2 +σ2)
. (6.21)

It is observed that the first term of the noise is irrelevant to the transmit SNR,

and therefore at high transmit SNR regime where σ2 becomes negligible, an

error floor will be observed.

Probability of error: In order to validate our analyses, we introduce the

probability of bit error for N-PSK in flat fading with respect to the transmit

SNR for K = Nt , and the average BER can be calculated as [30, 112, 113] (Ap-

pendix C)

Pb =
1

2K

K

∑
k=1

[
1−
√

ρk

τ2
k +ρk

]
, (6.22)

where τ2
k =

[
(CH)

−1
]

k,k
is the k-th diagonal entry in the inverse matrix of the

channel covariance CH. ρk denotes the SNR per bit, a.k.a., Eb
N0

for stream k.

For ZF precoding, ρk can be obtained based on γk, expressed as

ρk =
1

log2 (N) ·K (ωζ 2 +σ2)
, ∀k ∈K , (6.23)

where K = {1,2, · · · ,K}

6.3.3 Analysis - Quantised Loads, Imperfect CSI

We proceed to investigate the performance of ESPAR-based MIMO systems

imperfect CSI and quantised loads. We assume the system is operating in

the TDD mode, and the imperfect CSI model is given by

H = Ĥ+Q, (6.24)

which follows (2.55) described in Chapter 2.3.4, where we have assumed that

α = 1 for simplicity. To avoid confusion with the impedance error matrix El ,

we employ Q as the channel error matrix in this section.

With this imperfect CSI model, we substitute (6.15) and (6.24) into (6.1),
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which leads to the expression of the received signal vector as

y = H
[
i− (ZT +El)

−1Eli
]
+n

=
(
Ĥ+Q

)
i−
(
Ĥ+Q

)
(ZT +El)

−1Eli+n

= Ĥi+Qi−
(
Ĥ+Q

)
(ZT +El)

−1 Eli+n,

(6.25)

based on which we define an equivalent noise term for imperfect CSI as

n̂e
∆
= Qi−

(
Ĥ+Q

)
(ZT +El)

−1 Eli+n. (6.26)

Compared to the case of perfect CSI, we observe that an additional noise

term Qi is introduced as a result of the channel estimation errors. Similar to

the case of perfect CSI, n̂e conditioned on Q, ZT , El and i is i.i.d. Gaussian

with zero mean, and the equivalent noise power is given by

υ̂ = η + ω̂ζ
2 +σ

2, (6.27)

where ω̂ = (1+η)ω considers the channel estimation error effect.

Probability of error: The analytical BER for imperfect CSI is also ob-

tained via (6.22). Assuming ZF precoding at the transmitter, we can similarly

express the EbN0 for each user k in the case of imperfect CSI as

ρ̂k =
1

log2 (N) ·K (η + ω̂ζ 2 +σ2)
, ∀k ∈K . (6.28)

6.4 Proposed Quantisation-Robust Scheme

As noted above, the presence of quantised loads leads to a performance loss

for the ESPAR array at high SNR regimes. Therefore in this chapter, we pro-

pose to compensate for this loss by approximating the current vector of prac-

tical ESPARs to the desired signal vector with convex optimisation. Specifi-

cally, we propose to jointly optimise the feeding voltages and the quantised

loads such that an improved performance can be achieved, which is intro-
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duced in detail in the following.

6.4.1 Multiple-Fed ESPARs

In the presence of quantised load values, we firstly rewrite (6.12) as

î = [diag(ẑL)+ZM]−1vs = [diag(zL)+ZM +El]
−1vs, (6.29)

where ẑL denotes the quantised load vector. El is given in (6.13), where we

note that there exist quantisation errors only for the tunable loads. Different

from previous chapter where we fix the values of the feeding voltages, we

consider the variations in both the quantised loads and the voltages, which

leads to the expression of the current vector as

iR =
[
diag

(
ẑR

L
)
+ZM

]−1vR
s = [diag(zL)+ZM +El +D ·diag(t)]−1 (vs +∆v) ,

(6.30)

where iR denotes the optimised current vector, the optimised quantised loads

are denoted as ẑR
L , vR

s denotes the optimised voltage vector and ∆v is the vari-

ation in the feeding voltages. In (6.30), ER = E+D · diag(t), t ∈ CZNt×1 is

the complex integer vector to be optimised, which satisfies t(n) = 0, n ∈N ,

where N = {1,2, · · · ,N}. D · diag(t) represents the variations in the quan-

tised load values when the optimality is reached. Based on (2.59), (6.30) can

be further transformed into

iR =
[
diag

(
ẑR

L
)
+ZM

]−1 {[diag(ẑL)+ZM] i+∆v}

=
[
diag

(
ẑR

L
)
+ZM

]−1{[
diag

(
ẑR

L
)
+ZM−ER

l
]

i+∆v
}

= i−
[
diag

(
ẑR

L
)
+ZM

]−1ER
l i+

[
diag

(
ẑR

L
)
+ZM

]−1
∆v

= i+
[
diag

(
ẑR

L
)
+ZM

]−1 (
∆v−ER

l i
)
.

(6.31)

Based on the above, we can express the difference between the desired cur-

rent vector and the optimised current vector as

∆i = iR− i =
[
diag

(
ẑR

L
)
+Zm

]−1 (
∆v−ERi

)
, (6.32)
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which leads to the following proposition.

Proposition 1: ∆i cannot be minimised to 0 by optimising the feeding

voltage vector or the quantised load values.

Proof: ∆i = 0 is equivalent to

[
diag

(
ẑR

L
)
+Zm

]−1 (
∆v−ERi

)
= 0. (6.33)

Since ∆v(m) = 0, ∀m ∈M , we obtain that ∆v−ERi 6= 0. Accordingly, (6.33)

is equivalent to finding non-zero solutions for a linear system Ux = 0 with

U =
[
diag

(
ẑR

L
)
+Zm

]−1. Based on the linear algebra theory, the following

condition must be satisfied

det
{[

diag
(
ẑR

L
)
+Zm

]−1
}
= 0. (6.34)

However, (6.34) is not achievable for an inverse matrix, which completes the

proof. �

Proposition 1 implies that there always exists a performance loss com-

pared to the conventional FD MIMO systems, when quantised loads are em-

ployed for parasitic arrays. In the following, we propose to minimise the

performance loss by optimising the values of both the quantised loads and

the voltages, where the following proposition is given.

Proposition 2: When the optimality is achieved, t∗ = 0, which means

that any further variations in the quantised loads will only incur additional

performance losses.

Proof: When a variation in the quantised loads is further introduced,

t 6= 0 and based on (6.33) we can further obtain

iR = i−
[
diag

(
ẑR

L
)
+ZM

]−1Eli+
[
diag

(
ẑR

L
)
+ZM

]−1
[∆v−D ·diag(t) i] . (6.35)

Based on the expression of ∆v and t, it is observed that the introduction of

t can only increase the norm of [∆v−D ·diag(t) i], which further leads to an
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increased deviation from the desired current vector i. Moreover, the devia-

tion on the current values in the parasitic elements cannot be compensated

by the voltage vector. Therefore, to keep the deviation as small as possible,

the optimal case is to keep the load values unchanged and only optimise the

voltages only. �

Based on the above two propositions, we can construct the optimisation

problem as
P6.1 : min

∆v
‖∆i‖2

F

s.t. ∆v(m) = 0, ∀m ∈M

(6.36)

By introducing

P = [diag(zL)+ZM +El] (6.37)

which is fixed with respect to ∆v, P6.1 can be transformed into a convex form

as
P6.2 : min

∆v

∥∥P−1
∆v−P−1Ei

∥∥2
F

s.t. ∆v(m) = 0, ∀m ∈M

(6.38)

which can be efficiently solved by convex optimisation tools.

6.4.2 Single-Fed ESPARs: A Closed-Form Solution

We further consider a special case where single-fed ESPARs are employed,

and show that the optimal solution can be obtained in a closed form. In the

case of single-fed ESPARs, N = 1, and by introducing an auxiliary complex

variable α , ∆v can be expressed as

∆v = α ·vs, (6.39)

as there is only one entry in vs that is non-zero in the case of single-fed ES-

PARs. Based on (6.32) and the expression of P in (6.37), the difference in the
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current vector ∆i for single-fed ESPARs can be further simplified into

∆i = (1+α)P−1 (P−E) i− i

=
(
I−P−1E

)
i ·α +

[(
I−P−1E

)
− I
]

i

= T ·α +(T− i) ,

(6.40)

where the expression of T is given by

T =
(
I−P−1E

)
i (6.41)

with T ∈ CNt×1. With the above transformations, ‖∆i‖2 can be further ex-

pressed as

‖∆i‖2
F = tr

{
∆i∆iH

}
= tr

{
[T ·α +(T− i)] [T ·α +(T− i)]H

}
= tr

{
THT ·αα

∗}+2ℜ
(
tr
{(

TTH−TiH
)
·α
})

+ tr
{
(T− i)(T− i)H

}
.

(6.42)

Since T and i are independent of α , the optimisation on ‖∆i‖2
F for single-fed

ESPAR arrays can be constructed as

P6.3 : min
α

f (α) (6.43)

where the objective function f (α) is given by

f (α) = tr
{

THTαα
∗}+2ℜ

(
tr
{(

TTH−TiH
)

α
})

= tr{S ·αα
∗}+2ℜ(tr{T ·α}) .

(6.44)

In (6.44), S and U are given by

S = THT > 0, U = TTH−TiH . (6.45)
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By further denoting

ℜ(α) = αRE , ℑ(α) = αIM, (6.46)

the objective function in P6.3 can be further obtained as

f (α) =

{
Sα

2
RE +2

Nt

∑
i=1

ℜ [U(i, i)]αRE

}
+

{
Sα

2
IM−2

Nt

∑
i=1

ℑ [U(i, i)]αIM

}
. (6.47)

It can be observed that the real part and imaginary part of f (α) are both in

a quadratic form. Since α is a scalar, we can obtain the optimal α∗ as

α
∗ =

−
Nt
∑

i=1
ℜ [U(i, i)]

S
+ j ·

Nt
∑

i=1
ℑ [U(i, i)]

S
. (6.48)

Accordingly, the optimal feeding voltage for single-fed ESPARs is obtained

as

vR
s = (1+α

∗)vs. (6.49)

6.5 Numerical Results
To evaluate the performance of ESPAR-based MIMO systems and the pro-

posed quantisation-robust approaches, in this section we present numerical

results based on Monte Carlo simulations. QPSK modulation is employed

to evaluate the BER performance. For the parasitic array, we assume it op-

erates at the frequency of 2.6GHz and the antenna spacing is d = λ/4. For

the semi-correlated channels described in Chapter 2.3.2, we assume M = 50

throughout the simulations. We consider both multi-fed and single-fed par-

asitic antenna arrays, where the transmit SNR is defined as ρ = 1
σ2 . Closed-

form ZF precoding is assumed throughout the simulations.

6.5.1 Single-Fed Parasitic Arrays

We first focus on the small-scale single-fed parasitic arrays. To validate our

analysis in Chapter 6.3, Fig. 6.1 compares the analytical probability of bit

error and the numerical results for ZF precoding with impedance errors in
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Figure 6.1: BER v.s. transmit SNR, single-fed ESPARs, Nt = K = 5, D = 1, QPSK,
β = 5 for imperfect CSI

both perfect CSI and imperfect CSI, where the channel error coefficient is as-

sumed to be β = 5 for imperfect CSI. It can be seen that ideal ESPAR-based

MIMO systems with a single RF chain can achieve the same performance as

conventional MIMO with full RF chains. When we employ practical quan-

tised loads, a severe performance degradation is observed and an error floor

appears at high SNR regimes. For both perfect CSI and imperfect CSI, it is

observed that the analytical BER results match the simulated results. Note

that the corresponding curves for perfect and imperfect CSI converge to the

same error floor, which signifies that the quantisation errors become domi-

nant at high SNR.

Fig. 6.2 presents the BER of the proposed quantisation-robust scheme

for single-fed ESPAR systems with Nt = 5 and K = 3, in both perfect and im-

perfect CSI with the increasing transmit SNR. With the optimised feeding

voltage obtained by the proposed closed-form method, the performance of

ESPAR arrays with quantised loads are significantly improved, both for per-

fect and imperfect CSI. The proposed approach therefore enables the use of

practical parasitic antenna arrays with the employment of quantised antenna

loads.
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Figure 6.2: BER v.s. transmit SNR for the proposed quantisation-robust scheme,
single-fed ESPARs, Nt = 5, K = 3, D = 1, QPSK, β = 5 for imperfect CSI
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Figure 6.3: BER v.s. quantisation level D, single-fed ESPARs, Nt = 5, K = 3,
SNR=30dB, QPSK, β = 5 for imperfect CSI

Fig. 6.3 compares the BER performance of conventional MIMO and ES-

PARs with an increasing quantisation level D at the SNR of 30dB, in both

perfect and imperfect CSI. The BER performance for conventional MIMO

systems remains constant, as fixed antenna loads z0 are employed for each

antenna element. For parasitic arrays with quantised loads, the BER per-

formance is degraded severely with the increase in the quantisation level.
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Figure 6.4: BER v.s. transmit SNR, multiple-fed ESPARs, Nt = 64, K = 6, N = 7, D= 1,
QPSK, β = 5 for imperfect CSI
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Figure 6.5: BER v.s. quantisation level D, multiple-fed ESPARs, Nt = 64, K = 6, N = 7,
SNR=0dB, QPSK

For the proposed quantisation-robust approach, it can well alleviate the

impedance mismatch effect and achieve an improved performance, in both

perfect and imperfect CSI. It is also observed that the performance gains of

the proposed approach over ESPARs with quantised loads become more sig-

nificant with the increase in the quantisation level.
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6.5.2 Multiple-Fed Parasitic Arrays
We proceed to present the results for multiple-fed ESPARs. In Fig. 6.4, the

BER performance of multiple-fed ESPARs is shown with respect to the in-

creasing transmit SNR, where it is observed that the ideal multi-fed ES-

PAR systems can achieve a similar performance to the conventional MIMO

systems, while the presence of quantisation in the load values severely de-

grades the detection performance. Specifically for the multiple-fed ESPARs,

the proposed quantisation-robust approach can greatly alleviate the perfor-

mance loss by quantisation and achieve a close-to-optimal performance. In

terms of the BER performance with respect to the quantisation level, a sim-

ilar result to single-fed ESPARs can be observed in Fig. 6.5, where it is ob-

served that the proposed quantisation-robust scheme is less sensitive to the

increase in the quantisation interval, which validates its robustness.

6.6 Summary
In this chapter, the precoding techniques for parasitic antenna arrays

with quantised loads are studied. Our mathematical analyses indicate

that impedance errors introduced by quantisation introduce an additional

noise term, which is validated numerically. Furthermore, we propose a

quantisation-robust scheme to compensate for the performance loss by

quantisation, where the optimal feeding voltage for single-fed ESPARs can

be obtained in a closed form. Numerical results show that ideal ESPARs can

achieve a similar performance to the conventional MIMO systems, while the

proposed quantisation-robust method can well alleviate the performance

degradation by the use of quantised loads.
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Chapter 7

Hybrid Precoding and Application

to SWIPT

This chapter is based on our works in [C6], [C8], [J2], [J6].

7.1 Hybrid Precoding with Virtual Path Selection

7.1.1 Introduction

In addition to the hybrid structures considered in Chapter 6 with parasitic

antenna elements, in this chapter we extend our study to hybrid structures

with phase shifters, introduced in Chapter 2.4.2.

With the rich and under-exploited spectrum resources in the mmWave

band, mmWave communications have been one of the promising candidates

for the future 5G communication systems [65, 139, 140]. Compared to exist-

ing microwave cellular systems, the operating frequency for mmWave com-

munications is in tens of GHz, which results in a much higher pathloss in

the free space [65]. To overcome the pathloss encountered in the mmWave

frequencies, mmWave communication systems will require a large-scale an-

tenna array at the BS [66]. Thanks to the high frequency, the consequent

small carrier wavelength for mmWave enables packing a large number of

antennas in a small physical space [140]. Nevertheless, the conventional FD

precoding techniques require a dedicated RF chain for each antenna ele-

ment, which becomes impractical in the large-scale MIMO systems due to
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the significant cost and power consumption in the hardware components,

especially for mixed-signal hardwares designed in the mmWave band.

At first, analog processing and RF precoding techniques have been de-

signed for mmWave systems [141, 142], where low-cost phase shifters are

employed to circumvent the above practical constraints. However, there ex-

ists a performance gap compared to the FD precoding methods, especially

for multi-user transmission. This is due to the limited capability in man-

aging interference for analog-only precoding techniques. More recently, to

enable spatial multiplexing and approach the performance of FD precod-

ing without incurring significant hardware costs, the hybrid AD precoding

has been introduced as a promising technique to balance the performance

and the cost [11, 23]. The hybrid precoding employs a limited number of RF

chains and consists of an analog precoding via the phase shifter networks

and a low-dimensional digital precoding that manages the multi-stream and

multi-user interference. Thanks to the reduced number of RF chains, the hy-

brid structure is also shown to achieve an improved power efficiency com-

pared to the FD systems, which meets the energy-efficient transmission for

the future wireless communication systems. The power efficiency gains of

the hybrid precoding will be studied in the second part of this chapter for

SWIPT.

Hybrid precoding techniques have received increasing research atten-

tion due to the benefits mentioned above [67, 80, 143]. In [80], hybrid designs

for single-user mmWave MIMO systems have been proposed, where the or-

thogonal match pursuit (OMP) algorithm is proposed to obtain the analog

and baseband precoding matrices. The extension to multi-user cases has

been studied in [67], where a codebook-based design is proposed. Never-

theless, we note that the above designs for mmWave systems assume a fully-

connected RF structure, where each antenna is connected to all RF chains.

More recent study in [143] has shown that the fully-connected hybrid struc-

ture will introduce significant insertion losses, which degrade the perfor-
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mance in practical mmWave systems. Subsequently, a partially-connected

structure becomes more promising for practical implementation [81], where

each antenna is only connected to one RF chain and a lower number of phase

shifters is required.

In this chapter, we firstly consider the multi-user transmission in the

downlink mmWave communication systems, and propose a low-complexity

hybrid precoding design. We perform a virtual path selection in the RF do-

main to maximise the effective analog channel gain, and we subsequently

employ ZF precoding in the baseband to eliminate the multi-user inter-

ference, based on the low-dimensional effective analog channel. Three

distinct designs are proposed respectively with each achieving a different

performance-complexity tradeoff. The proposed precoding method applies

to both the fully-connected and partially-connected structures, which can

approach the performance of FD precoding schemes with a reduced hard-

ware cost. Our computational cost analysis and simulation results validate

the performance-complexity advantages of the proposed schemes over ex-

isting techniques.

7.1.2 System Model

We consider a large-scale MU-MIMO downlink system that follows Chapter

2.4.2, where a BS with Nt antennas and Nt
RF RF chains communicates with

K users, each equipped with Nk
r antennas. Following [144], we focus on the

case where the BS employs K RF chains to support the transmission of K

streams, i.e. K = Nt
RF , and single-stream transmission is assumed for each

user. With the hybrid AD structures, the transmit signal vector can be con-

structed as

x = FRFFBBs, (7.1)

where FBB = [fBB1, fBB2, · · · , fBBK ] ∈ CK×K is the baseband precoder. s ∈ CK×1

denotes the data symbol vector and E
{

ssH} = P
K · I, where P is the total

available transmit power and we assume uniform power allocation for each
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stream. FRF ∈ CNt×K is the RF precoder implemented with phase shifters,

and therefore each entry of FRF is of constant modulus. The total power

constraint is satisfied by normalising the digital precoder FBB, such that

‖FRFFBB‖2
F = K (7.2)

is obtained [67]. At the receiver side, each user k is equipped with one RF

chain, and a RF-only combiner wH
k ∈C1×Nk

r is employed, where each entry in

the vector wk is of constant modulus and normalised to satisfy

[wk]m =
1√
Nk

r
, ∀k ∈K , ∀m ∈

{
1,2, · · · ,Nk

r

}
, (7.3)

where K = {1,2, · · · ,K}. The received symbol for user k can be expressed as

rk = wH
k HkFRF fBBksk +wH

k HkFRF ∑
j 6=k

fBB js j +wH
k nk, (7.4)

where Hk ∈ CNk
r×Nt is the mmWave channel from the BS to user k, which is

introduced in Chapter 2.3.3, nk is the additive Gaussian noise vector with

zero mean and covariance σ2 · I. The sum rate is then calculated according

to [67]

R =
K

∑
k=1

log2

1+
P
K

∣∣wH
k HkFRF fBBk

∣∣2
K
∑
j 6=k

P
K

∣∣wH
k HkFRF fBB j

∣∣2 +σ2

. (7.5)

7.1.3 Proposed Hybrid Precoding Approaches

We introduce the proposed hybrid precoding techniques in this chapter,

where the analog domain is first designed by applying phase-only weights,

followed by the design in the digital domain. We first consider the fully-

connected structures, and then extend to the partially-connected structures.

By denoting

W = diag{[w1,w2, · · · ,wK]} , H =
[
HT

1 ,H
T
2 , · · · ,HT

K
]T
, (7.6)
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we can express the effective RF channel in a compact form as

H̃ = WHHFRF , (7.7)

where we note that the diagonal entries in H̃ are the RF-to-RF channel gains,

while the off-diagonal terms denote interference. Therefore, we focus on

the maximisation on the diagonal terms of H̃ in the analog domain, while

the off-diagonal interference is handled by the low-dimensional baseband

precoder. Based on (7.7), the k-th diagonal entry of H̃ can be expressed as

H̃(k,k) = wH
k Hkf f

k . (7.8)

The aim of the proposed approaches is to extract the phases of the downlink

channel from the BS to users to formulate the analog precoder and combiner,

where we employ the conjugate transpose to maximise the analog effective

channel gain. We note that in a MU-MIMO system, for each user k, Hk ∈

CNk
r×Nt , while f f

k ∈C
Nt×1. Therefore, direct conjugate transposition cannot be

applied. Nevertheless, as Hk is Nk
r ×Nt dimensional, we decompose it into

Hk =

[(
h1

k
)T

,
(
h2

k
)T

, ...,
(

hNk
r

k

)T
]T

, (7.9)

and each hi
k represents a virtual path. Accordingly, in the following we pro-

pose three distinct precoding approaches based on virtual path selection to

maximise H̃(k,k) for each user k.

Joint Design: In the joint design, we propose to jointly design wk and

f f
k for each user k. In the first step, for each i ∈

{
1,2, ...,Nk

r
}

, we design a tem-

porary analog precoder pi
k as the conjugate transpose of hi

k with an element-

wise normalisation to satisfy the constant modulus constraint, given by [144]

[
pi

k
]

m =
1√
Nt

e j·(−ϕ i
m), m ∈ {1,2, ...,Nt} , (7.10)
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where ϕ i
m is the phase of the m-th element in hi

k, and we further denote

ti
k = Hkpi

k. (7.11)

Similarly, a temporary analog combiner qk is constructed as

[
qi

k
]

m =
1√
Nk

r
e j·ω i

m, m ∈
{

1,2, ...,Nk
r

}
, (7.12)

where ω i
m denotes the phase of the mth element in ti

k. In the second step,

we select the virtual path i that achieves the largest effective channel gain

H̃(k,k), expressed as

(
i∗,pi∗

k ,q
i∗
k

)
= argmax

i∈{1,2,...,Nk
r}

[(
qi

k
)H Hkpi

k

]
. (7.13)

The detailed joint approach is given in Algorithm 7.1.

Algorithm 7.1 Joint Analog Precoder and Combiner Design
input : Hk
output : f f

k , wk

for i = 1 to Nk
r do

Calculate
[
pi

k

]
m = 1√

Nt
e j·(−ϕ i

m),m ∈ {1,2, ...,Nt};
Calculate ti

k = Hkpi
k;

Calculate
[
qi

k

]
m = 1√

Nk
r
e j·ω i

m , m ∈
{

1,2, ...,Nk
r
}

;

Calculate H̃(k,k) =
(
qi

k

)H Hkpi
k;

end for
find i∗ = argmax

i∈{1,2,...,Nk
r}

H̃(k,k);

Output f f
k = pi∗

k , wk = qi∗
k .

Difference from Antenna Selection: We note the difference in our pro-

posed approach from the antenna selection techniques. For each user k, each

time the proposed method employs a specific row of Hk to obtain pi
k and qi

k

accordingly, while the selected f f
k that maximises the effective channel gain

H̃(k,k) applies to all rows of Hk at the BS for the k-th user, which means that

all the transmit antennas are active. At each user side, all the receive an-
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tennas are active and employ the analog combiner wk to obtain the received

symbol for demodulation. Therefore, the proposed approach is not an an-

tenna selection scheme but termed as a ‘virtual path selection’ approach.

Furthermore, we note that the design of analog precoder and combiner is

only dependent on the channel, and therefore no additional information ex-

change is required between the BS and users.

Decoupled Design: For the proposed joint design, both FRF and W need

to be calculated at the BS, while each user k needs to calculate FRF and wk.

In this chapter, we further introduce a decoupled virtual path selection ap-

proach, where the BS only needs to calculate FRF , while the calculation of

each wk is solely conducted at the user side. For each user k, we first formu-

late pi
k by (7.10), and we find i∗ that maximises hi

kpi
k, expressed as

(
i∗,pi∗

k

)
= argmax

i∈{1,2,...,Nk
r}

hi
kpi

k, (7.14)

which is equivalent to finding hi
k with the largest norm. For each analog

combiner, wk = qk is then obtained by (7.12) based on t∗k =Hkpi∗
k . The detailed

algorithm is given in Algorithm 7.2.

Algorithm 7.2 Decoupled Precoder and Combiner Design
input : Hk
output : f f

k , wk

for i = 1 to Nk
r do

Calculate
[
pi

k

]
m = 1√

Nt
e j·(−ϕ i

m),m ∈ {1,2, ...,Nt};
end for
find i∗ = argmax

i∈{1,2,...,Nk
r}

hi
kpi

k;

f f
k = pi∗

k , t∗k = Hkf f ull
k ;

Calculate [wk]m = 1√
Nk

r
e j·ω∗m, m ∈

{
1,2, ...,Nk

r
}

;

Output f f
k , wk.

Low-Complexity Sub-optimal Design: A low-complexity approach is

further proposed, where a random path is selected to obtain the analog pre-

coders and combiners. Without loss of generality, we employ h1
k to obtain fk
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and wk for each user k. This approach removes the complexity of calculating

the optimal i∗ and requires the least computational cost. The algorithm is

given in Algorithm 7.3.

Extension to Partially-Connected Structures: When partially-connected

structures are considered as in Fig. 2.9 (b), each fp
k ∈ CMp×1. Similar to the

design for the fully-connected structures, we design each pi
k as the conjugate

transpose of part of the hi
k, where for partially-connected structures, we have

[
pi

k
]

m =
1√
Nt

e j·(−ϕ i
m), m ∈

{
(k−1)Mp +1, · · · ,kMp

}
. (7.15)

The final analog precoder fp
k and combiner wk for partially-connected struc-

tures can be similarly obtained via the above three algorithms. It is observed

in (7.15) that the analog precoder for partially-connected structures can only

harvest part of the array gains, and therefore a performance gap in terms of

the sum rate will be observed compared to the fully-connected structures,

which will be numerically verified.

Algorithm 7.3 Sub-optimal Precoder and Combiner Design
input : h1

k
output : f f

k , wk

Calculate
[
p1

k

]
m = 1√

Nt
e j·(−ϕ1

m), m ∈ {1,2, ...,Nt};
f f
k =p1

k ;
Calculate tk = Hkf f

k ;
Calculate [wk]m = 1√

Nk
r
e j·ωm, m ∈

{
1,2, ...,Nk

r
}

;

Output f f
k and wk.

Baseband Design: With FRF and W obtained based on the introduced

methods via virtual path selection, in the baseband we employ a ZF pre-

coding to eliminate the multi-user interference in the off-diagonal of H̃, ex-

pressed as

FBB =
1
f
· H̃H(H̃H̃H)−1

, (7.16)
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where the scaling factor f is to guarantee that the power constraint

‖FRFFBB‖2
F = K is met.

7.1.4 Computational Cost Analysis

It can be observed that the complexity of the proposed technique is domi-

nated by the calculations of H̃(k,k) and ti
k = Hkpi

k. Note that Hk ∈CNk
r×Nt and

pi
k ∈ CNt×1, and therefore the calculation of qi

k in (7.12) involves Nk
r Nt multi-

plications. The calculation of H̃(k,k) in Algorithm 7.1 involves
(
Nk

r +Nk
r Nt
)

multiplications. This has to be calculated Nk
r times for each user, both at the

transmitter and the receiver, which leads to the total computational cost for

the fully-connected system as:

CJoint = 2
K

∑
k=1

Nk
r

(
Nk

r +2Nk
r Nt

)
. (7.17)

The complexity of Algorithm 7.2, 7.3 can be similarly obtained as

Cdecoupled = 2
K

∑
k=1

Nk
r

(
Nk

r Nt

)
+

K

∑
k=1

Nk
r , (7.18)

and

Csub−optimal =
K

∑
k=1

Nk
r Nt . (7.19)

For the hybrid precoding approaches based on partially-connected struc-

tures, the resulting computational costs can be efficiently obtained by sub-

stituting Nt with M in (7.17)-(7.19).

7.1.5 Numerical Results

In this section, the numerical results based on Monte Carlo simulations are

presented. Without loss of generality, both ULAs and UPAs are employed

with the antenna spacing d = λ

2 , and the number of propagation paths Lu =

6. We assume the azimuth angles θ ∈ [0,2π], and the elevation angles φ ∈[
−π

2 ,
π

2

]
. For simplicity we assume Nk

r = N0
r , ∀k. We compare the proposed

schemes with existing codebook-based scheme [67], analog-only precoding,
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and FD BD precoding [43]. The transmit SNR in each figure is defined as

ρ = 1
Kσ2 , where we have assumed a total transmit power P = 1.

Fig. 7.1 and Fig. 7.2 present the sum rate of different precoding meth-

ods with the increasing SNR for ULAs and UPAs respectively, where the the

quantisation of the azimuth and elevation angle is 4 bits and 3 bits respec-

tively for the codebook-based approach in [67]. For fully-connected struc-

tures, it is observed that all of the proposed methods outperform the exist-

ing codebook-based scheme and analog precoding, and can approach the

performance of FD BD precoding. Specifically, in the case of UPAs we ob-
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serve only a SNR loss of less than 2dB for our proposed technique. A similar

trend can be observed for the partially-connected structures, where the joint

design achieves the best sum rate performance, followed by the proposed

decoupled method. For partially-connected structures, there is a loss in sum

rates as only part of the array gain can be obtained.
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Fig. 7.3 compares the computational cost for each proposed algorithm in

terms of the multiplication number required. In general, it is observed that

fewer multiplications are needed for partially-connected structures, as Nt is

substituted by Mp. For both fully-connected and partially-connected struc-

tures, it is observed that the joint design requires the most number of multi-

plications, while as expected the computational cost for the low-complexity

sub-optimal approach is negligible, compared to the joint and decoupled

design.

7.2 Hybrid Precoding for Energy-Efficient SWIPT
In this section, we extend the study on hybrid precoding to MIMO SWIPT

systems for an energy-efficient transmission.

7.2.1 Introduction
With the increasing traffic demand and number of user equipments (UEs) in

the wireless environment, the power consumption of both the BSs and UEs in
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the wireless communication systems has increased dramatically [145, 146].

However, most UEs only have limited power supplies (batteries) currently,

which has become a bottleneck when the power consumption becomes in-

creasingly high, and the slow development speed of battery techniques can-

not satisfy the current energy requirement [147]. Towards this direction, en-

ergy harvesting (EH) techniques have been proposed to exploit the natural

energy such as solar, tide and wind to prolong the battery life of UEs [148].

However, such techniques usually depend on the environmental conditions

and the natural energy may not always be available, especially for the indoor

environments.

Recent advances have shown that electromagnetic (EM) radiation can

be exploited as a potential energy source, based on the fact that the energy

included in EM waves can be converted to direct current (DC) voltage with

rectenna circuits [149, 150]. A step further has been obtained by the wire-

less power transfer technique, which has been extensively studied for wire-

less sensor networks [151, 152, 153, 154]. Similarly for wireless communica-

tions, the energy harvesting techniques and wireless power transfer enable

the UEs to harvest energy from the EM waves in the communication links,

and therefore have become particularly appealing [155, 156, 157, 158]. For

wireless communication systems, the RF signals carry both the information

and energy at the same time, and there exists a fundamental tradeoff be-

tween information decoding and energy harvesting, which has been studied

in [157] for flat fading and [158] for selective fading, respectively. Neverthe-

less, an ideal receiver that can simultaneously decode information and har-

vest energy with the same received signal is assumed in [157, 158], which

is not applicable currently. Therefore, a more practical approach termed as

SWIPT is considered in [159], where three different types of receivers are

proposed, i.e., separate, time-switching and power-splitting. MIMO SWIPT

techniques have recently attracted a lot of research attention [160, 161, 162,

163, 164], where in [161, 162] the SWIPT techniques for cellular networks
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are considered, and in [163] a robust precoder for MIMO SWIPT systems

with stochastic Rician fading is proposed. [164] employs the ZF precoding

method for SWIPT systems, and shows that the energy obtained by the EH

receivers can be increased at the cost of a SINR loss of the information de-

coders (IDs). The downlink precoding scheme that maximises the received

energy for EH receivers while guaranteeing the SINR of the IDs is considered

in [165]. A data-aided downlink precoding that exploits the CI is proposed

in [166] to further improve the performance of MIMO SWIPT systems. In

[167, 168, 169, 170], the joint information and energy precoding approaches

for MIMO interference channels have been investigated, while the study of

MIMO SWIPT techniques has also been combined with physical layer secu-

rity in [171, 172, 173, 174] by considering the broadcast nature of the wireless

communications.

In addition to the SWIPT techniques, energy-efficient transmission is

another way to manage the increasing power consumption of the wireless

industry. The above existing designs for SWIPT with MIMO systems all as-

sume a FD precoder, which requires a dedicated pair of DACs and a RF chain

for each antenna element. Such FD design for MIMO systems will lead to a

high power consumption at the BS. Even with moderate numbers of anten-

nas, the power consumption of the RF chains is dominant, and the hybrid

AD precoding techniques that allow a reduction in the RF chains are desir-

able. While the hybrid AD precoding has been widely studied for large-scale

MIMO systems, what has been neglected in the existing literature is that the

hybrid structure is a promising candidate for energy-efficient transmission,

which meets the requirement for the future wireless communication sys-

tems. Moreover, the reduction in the hardware complexity and power con-

sumption directly applies to small-scale MIMO systems. Indeed, small APs

for the future IoTs or small BSs (for example femtocells or picocells that are

widely deployed for heterogeneous networks) usually have limited power

supply, which can benefit from the hybrid structures. Interestingly, such
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power-efficient approaches by hybrid precoding have yet to be explored for

SWIPT.

Accordingly, in this chapter we investigate the SWIPT techniques for

small-scale MIMO systems with limited RF chains at the APs, where energy-

efficient hybrid AD precoding is considered. We study the scenario where

the BS serves one ID and several EH receivers simultaneously, and we fo-

cus on the minimisation of the total transmit power at the BS, while meet-

ing the SINR requirement of the ID and the harvested energy requirement

of each EH receiver. Firstly, we mathematically analyse the FD precoding

problem with Lagrangian and Karush-Kuhn-Tucker (KKT) conditions, and

analytically show that the optimality is achieved by employing the infor-

mation precoder only. Specifically, for the case where there is only one EH

receiver, we obtain the closed-form expressions of the optimal precoding

vectors. The above study mathematically proves that the optimality can be

achieved by employing the information precoder only. We proceed to con-

sider the hybrid case, where we firstly propose a low-complexity hybrid ap-

proach as a performance benchmark. For the low-complexity hybrid scheme,

the analog precoders are obtained based on the SVD of the channel, and

the low-dimensional digital precoder is subsequently obtained based on the

effective analog channel. To improve upon the above hybrid approach, an

iterative hybrid method is further introduced, where in each iteration we

design the analog precoder by minimising the Euclidean distance between

the FD precoder and the hybrid precoder. Based on our analyses on the

FD case, the optimal analog precoder can be efficiently solved via a geomet-

rical interpretation. For both hybrid precoding schemes, the extension to

partially-connected structures at the BS is also introduced. The numerical

results show that the proposed iterative method achieves a near-optimal per-

formance for fully-connected structures, while the performance gains over

the hybrid case based on SVD are more significant for partially-connected

structures. It is important to observe that the hybrid structures consume
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much less total power at the BS to achieve the same performance as the FD

structure, which verifies that the hybrid structures are more favourable for

the future energy-efficient transmission.

For reasons of clarity, we summarise the contributions of this paper as:

• We analyse the FD MIMO SWIPT power minimisation problem with

Lagrangian and KKT approaches, where we show analytically that the

optimality is achieved by employing the information precoder only.

For the special case with only one EH receiver in the system, we derive

the closed-form expressions of the optimal FD precoders.

• Based on the above observation, we proceed to consider a small-scale

MIMO SWIPT system with limited RF chains at the BS, and propose a

low-complexity hybrid precoding method for the power minimisation

problem, where the analog precoders are obtained based on SVD.

• We further propose an iterative hybrid scheme, where the analog pre-

coder is designed by minimising the Euclidean distance between the

hybrid precoder and the FD precoder. Within each iteration, the op-

timal solution of the analog precoder can be efficiently obtained via a

geometrical approach.

7.2.2 System Model and FD SWIPT

We consider a downlink MIMO system as shown in Fig. 7.4, where a BS

with Nt antennas and Nt
RF RF chains serves one single-antenna ID and K

single-antenna EH receivers simultaneously. We assume that perfect CSI is

available at the BS throughout this chapter. A spatially-uncorrelated flat-

fading Rayleigh MIMO channel is assumed, and we denote hI ∈ C1×Nt and

hk
E ∈ C1×Nt as the channel from the BS to the ID and EH receiver k, respec-

tively. Each entry of hI and hk
E is modelled as

[hI]m =

√
α0D−β

I CI · [gI]m , m ∈N ,[
hk

E

]
m
=

√
α0
(
Dk

E
)−βCk

E ·
[
gk

E

]
m
, m ∈N ,

(7.20)
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Figure 7.4: Block diagram of the hybrid AD precoding for SWIPT

which is valid for far-field communication where the distance between the

receivers and the BS is on the order of tens of meters [175], and we denote

N = {1,2, ...,Nt}. In (7.20), α0 is a constant determined by the wireless prop-

agation environment, DI is the distance between the BS and the ID, β rep-

resents the pathloss coefficient, and CI denotes the shadow fading. Each

element in gI is independent and follows the standard complex Gaussian

distribution, which forms the Rayleigh component of the channel. The de-

notation is similar for each hk
E of the EH receiver k.

When a conventional FD precoding is considered, Nt
RF = Nt and we de-

note the corresponding FD precoding matrix as W =
[
wI,w1

E , ...,wK
E
]
. Ac-

cordingly, we can express the received symbol at the ID as

rI = hIwIsI +hI

K

∑
i=1

wi
Esi

E +nI, (7.21)

where sI and each si
E denote the data symbol. nI represents the additive

Gaussian noise with zero mean and variance σ2. Following the existing lit-

erature [165, 167, 170], we express the received SINR for the ID as

γI =
|hIwI|2

K
∑

k=1

∣∣hIwk
E

∣∣2 +σ2
. (7.22)

For the EH receivers, we assume the noise power at each receiver is the same

as that of ID. For simplicity, we assume a linear energy harvesting model
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[165, 170, 176], based on which we can obtain the harvested energy for the

k-th EH receiver as

Ek = η

(∣∣∣hk
EwI

∣∣∣2 + K

∑
i=1

∣∣∣hk
Ewi

E

∣∣∣2 +σ
2

)
, (7.23)

where η is a constant that represents the efficiency of converting the received

radio signals into electrical energy. In (7.23), 0 < η < 1 and for simplicity we

have assumed an identical energy transformation efficiency η for each user.

We consider the optimisation problem where the transmit power is min-

imised while meeting the SINR requirement of the ID and the harvested en-

ergy requirement of each EH receiver, which can be constructed as [166]

P7.1 : min
wI ,wi

E

p

s.t. p≥ ‖wI‖2 +
K

∑
i=1

∥∥wi
E
∥∥2

γI ≥ γ0, Ek ≥ E0, ∀k ∈K

(7.24)

where K = {1,2, ...,K}, and γ0 is the SINR requirement of the ID. For sim-

plicity we have assumed an identical harvested energy requirement for each

EH receiver, which is denoted as E0.

7.2.3 Analyses on the FD SWIPT

To introduce the rationale behind the proposed hybrid iterative precoding in

Chapter 7.2.5, we firstly perform mathematical analyses on the FD precoding

problem with the Lagrangian and KKT approach, where we show that the

optimality of P7.1 is achieved by employing the information precoder only.

While the KKT conditions are only necessary conditions for non-convex op-

timisation problems, for the considered problems we can verify that the ob-

tained solutions are also sufficient. Similar conclusions can be drawn for the

hybrid case, and these two observations motivate the design of the proposed

iterative algorithm in Chapter 7.2.5.
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7.2.3.1 The Case of Only One EH Receiver

Firstly, we consider a special case where there is one ID and one EH receiver

in the system, and in this case P7.1 can be simplified as

P7.2 : min
wI ,wi

E

wH
I wI +wH

E wE

s.t. hIwEwH
E hH

I +σ
2− 1

γ0
hIwIwH

I hH
I ≤ 0

E0

η
−σ

2−hEwEwH
E hH

E −hEwIwH
I hH

E ≤ 0

(7.25)

We express the Lagrangian of P7.2 as [124]

L (wI,wE ,λI,λE) = wH
I wI +wH

E wEλI

(
hIwEwH

E hH
I +σ

2− 1
γ0

hIwIwH
I hH

I

)
+λE

(
E0

η
−σ

2−hEwEwH
E hH

E −hEwIwH
I hH

E

)
,

(7.26)

where λI and λE denote the dual variables with respect to the SINR and

harvested energy constraint, respectively. Accordingly, the KKT conditions

for optimality are obtained as

∂L

∂wI
= wH

I −
λI

γ0
wH

I hH
I hI−λEwH

I hH
E hE = 0 (7.27a)

∂L

∂wE
= wH

E +λIwH
E hH

I hI−λEwH
E hH

E hE = 0 (7.27b)

λI

(
hIwEwH

E hH
I +σ

2− 1
γ0

hIwIwH
I hH

I

)
= 0 (7.27c)

λE

(
E0

η
−σ

2−hEwEwH
E hH

E −hEwIwH
I hH

E

)
= 0 (7.27d)

In the following, dependent on whether the SINR and energy constraint are

active or not, we discuss the optimality condition of the optimisation prob-

lem, and obtain the closed-form expressions of the optimal precoding vec-

tors and the corresponding transmit power PT X required.

Only SINR Constraint is Active: When only the SINR constraint is

strictly met, this corresponds to the case where the SINR target is high and



7.2. Hybrid Precoding for Energy-Efficient SWIPT 187

more demanding compared to the harvested energy requirement, which

leads to the following proposition.

Proposition 1: When only the SINR constraint is active, the optimal pre-

coding vectors are given by

w∗I =
√

γ0σ2(
hIhH

I
) ·hH

I , w∗E = 0, (7.28)

the energy target E0 of the EH receiver should satisfy

E0 ≤
γ0ησ2 (hIhH

E hEhH
I
)(

hIhH
I
)2 +ησ

2, (7.29)

and the corresponding transmit power required is

P∗T X =
γ0σ2(
hIhH

I
) . (7.30)

Proof: In this case, the harvested energy by the information precoder

already meets the energy requirement for the EH receiver, which leads to

η
(
hEwIwH

I hH
E +σ

2)> E0, (7.31)

and w∗E = 0 because in this case the presence of the energy precoder will only

degrade the received SINR performance of the ID. Based on the complemen-

tary slackness condition in (7.27d), we can further obtain λI > 0 and λE = 0.

Based on the above, the KKT conditions can be simplified into

wH
I −

λI

γ0
wH

I hH
I hI = 0, σ

2− 1
γ0

hIwIwH
I hH

I = 0. (7.32)

We note that the optimal wI is not unique and is invariant to a phase rotation,

and therefore in (7.32) we can assume there exists an optimal wI such that

ℑ{hIwI}= ℑ
{

wH
I hH

I
}
= 0, which further leads to

hIwI = wH
I hH

I =
√

γ0σ2. (7.33)
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By substituting (7.33) into (7.32), we can further obtain λI =
γ0

(hIhH
I )

, which

leads to the final expression of the optimal wI , given by

w∗I =
√

γ0σ2(
hIhH

I
) ·hH

I . (7.34)

Accordingly, we can obtain the transmit power as

P∗T X = (w∗I )
H w∗I =

γ0σ2(
hIhH

I
) , (7.35)

which is only relevant to the SINR target of the ID and not relevant to E0. To

fall within this category, the harvested energy requirement should satisfy

E0

η
−σ

2 ≤ hEwIwH
I hH

E ⇒ E0 ≤
γ0ησ2 (hIhH

E hEhH
I
)(

hIhH
I
)2 +ησ

2 ∆
= E1

th. (7.36)

Only Energy Constraint is Active: When only the energy constraint is

active, this corresponds to the case where the harvested energy requirement

is more demanding, which leads to the following proposition.

Proposition 2: When only the energy constraint is active, the optimal

precoding vectors are given by

w∗I =

√
E0−ησ2

η(1+c2)(
hEhH

E
) ·hH

E , w∗E = c ·w∗I , (7.37)

where c ≥ 0 is real and satisfies (7.46) which is shown in the proof that fol-

lows. The harvested energy requirement E0 should satisfy

E0 ≥
γ0ησ2(hEhH

E
)2(

hIhH
E hEhH

I
) +ησ

2, (7.38)

and the corresponding transmit power required is

P∗T X =
E0−ησ2

η
(
hEhH

E
) . (7.39)
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Proof: In this case, the SINR requirement for the ID is over-satisfied,

and we obtain
1
γ0

hIwIwH
I hH

I > hIwEwH
E hH

I +σ
2. (7.40)

Based on the complementary slackness condition in (7.27c), we further ob-

tain λI = 0 and λE > 0, and the stationarity conditions in (7.27a) and (7.27b)

can be transformed into

wH
I −λEwH

I hH
E hE = wH

I
(
I−λEhH

E hE
)
= 0 (7.41a)

wH
E −λEwH

E hH
E hE = wH

E
(
I−λEhH

E hE
)
= 0 (7.41b)

It is observed that the optimal wI and wE are parallel, and without loss of

generality we can assume

wE = c ·wI, (7.42)

where c ≥ 0. Furthermore, as the energy constraint is active, we substitute

(7.42) into (7.27d), which yields

(
1+ c2)hEwIwH

I hH
E =

E0

η
−σ

2 ⇒ hEwI = wH
I hH

E =

√
E0−ησ2

η (1+ c2)
, (7.43)

By substituting (7.43) into (7.41a), the optimal information precoder and en-

ergy precoder can be obtained as

w∗I =

√
E0−ησ2

η(1+c2)(
hEhH

E
) ·hH

E , w∗E =

c
√

E0−ησ2

η(1+c2)(
hEhH

E
) ·hH

E . (7.44)

Incorporating the above expressions of the optimal precoding vectors into

(7.31), we can obtain

1
γ0

E0−ησ2

η(1+c2)(
hEhH

E
)2

(
hIhH

E hEhH
I
)
> c2

E0−ησ2

η(1+c2)(
hEhH

E
)2

(
hIhH

E hEhH
I
)
+σ

2. (7.45)
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With some further transformations, we obtain that c should satisfy

1
γ0

> c2 +

(
1+ c2)ησ2(hEhH

E
)2

(E0−ησ2)
(
hIhH

E hEhH
I
)

⇒ c2 <
1
γ0
·
(
E0−ησ2)(hIhH

E hEhH
I
)
− γ0ησ2(hEhH

E
)2

(E0−ησ2)
(
hIhH

E hEhH
I
)
+ησ2

(
hEhH

E
)2 .

(7.46)

Since c2 ≥ 0, based on (7.46) we can obtain the requirement for E0, which is

given by

E0 ≥
γ0ησ2(hEhH

E
)2(

hIhH
E hEhH

I
) +ησ

2 ∆
= E2

th, (7.47)

and we further note that E2
th obtained in (7.47) is guaranteed to be larger than

E1
th in (7.36) based on the inner-product property, where we have

hIhH
I hEhH

E ≥ hIhH
E hEhH

I . (7.48)

In (7.48), the equality holds only when hI and hE are parallel. Furthermore,

we can obtain the total power consumption as

P∗T X =
(
1+ c2)(w∗I )H w∗I =

E0−ησ2

η
(
hEhH

E
) , (7.49)

which is independent of c. This can also be observed from the optimisation

problem itself, as the EH receiver harvests the energy from both the infor-

mation precoder and the energy precoder. As long as the value of c satisfies

(7.46) (this guarantees that the SINR target of the ID is met), how the power

is distributed between wI and wE according to (7.44) will not have an impact

on the total amount of energy harvested by the EH receiver. We note that by

choosing c= 0, the optimality can be achieved by employing the information

precoder only.

Both Constraints are Active: When both the SINR constraint and en-

ergy constraint are active, we first note that if λE = 0, the optimal solution

will be the same as (7.28), which corresponds to the extreme point before
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which the energy constraint is not active, and the optimal solution is to em-

ploy information precoder only. If λE = 0, the optimal solution will be (7.37).

Therefore in the following, we focus on the case where λI > 0 and λE > 0,

which leads to the following proposition.

Proposition 3: When both the SINR constraint and energy constraint

are active, the optimal precoding vectors can be expressed as

w∗I = α ·hH
I +β ·hH

⊥, w∗E = 0, (7.50)

where h⊥= hE−
hE hH

I hI

(hIhH
I )

is orthogonal to hI , and α , β are the weighting factors.

The energy requirement for the EH receiver should satisfy

γ0ησ2 (hIhH
E hEhH

I
)(

hIhH
I
)2 +ησ

2 < E0 <
γ0ησ2(hEhH

E
)2(

hIhH
E hEhH

I
) +ησ

2, (7.51)

and the corresponding transmit power required is

P∗T X = λIσ
2 +λE

(
E0

η
−σ

2
)
. (7.52)

Proof: We firstly derive the expression of the total transmit power, based

on which we prove that w∗E = 0 by contradiction, and subsequently we obtain

the expression of the optimal information precoder w∗I . To be specific, we

multiply wI and wE to the right-hand side of (7.27a) and (7.27b) respectively,

and we can further obtain

wH
I wI =

λI

γ0
hIwIwH

I hH
I +λEhEwIwH

I hH
E (7.53a)

wH
E wE =−λIhIwEwH

E hH
I +λEhEwEwH

E hH
E (7.53b)

The sum of (7.53a) and (7.53b) yields

wH
I wI +wH

E wE = λI

(
1
γ0

hIwIwH
I hH

I −hIwEwH
E hH

E

)
+λE

(
hEwIwH

I hH
E +hEwEwH

E hH
E
)
.

(7.54)
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It is observed in (7.54) that the left-hand side is the total transmit power.

Since both the SINR constraint and the energy constraint are active, the right-

hand side can be further simplified and the total transmit power is obtained

as

P∗T X = λIσ
2 +λE

(
E0

η
−σ

2
)
, (7.55)

which means that the optimal transmit power is only related to the dual vari-

ables.

Based on (7.55), we proceed to prove that w∗E = 0 by contradiction. We

firstly assume one case, where the optimal solution is an information pre-

coder w0
I only that satisfies both of the constraints, and the corresponding

power consumption is obtained as

P0
T X = λ

0
I σ

2 +λ
0
E

(
E0

η
−σ

2
)
. (7.56)

In addition, we assume another case, where we need an information pre-

coder wI and an energy precoder wE to satisfy both of the constraints, with

the same total transmit power. The total power consumption in this case is

expressed as

PT X = λIσ
2 +λE

(
E0

η
−σ

2
)
. (7.57)

As can be observed, PT X = P0
T X is equivalent to λI = λ 0

I and λE = λ 0
E . Subse-

quently, we express the stationarity condition for w0
I and wI as

(
w0

I
)H
(

I−
λ 0

I
γ0

hH
I hI−λ

0
EhH

E hE

)
= 0, (7.58a)

wH
I

(
I− λI

γ0
hH

I hI−λEhH
E hE

)
= 0. (7.58b)

With λI = λ 0
I and λE = λ 0

E , it is observed that w0
I and wI are parallel, and

without loss of generality we assume

wI = a ·w0
I , (7.59)
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where a is real and a 6= 0. As the SINR constraint is active for both cases, we

can obtain
1
γ0

hIw0
I
(
w0

I
)HhH

I = σ
2,

a2

γ0
hIw0

I
(
w0

I
)HhH

I = hIwEwH
E hH

I +σ
2.

(7.60)

(7.60) can be further transformed into(
a2−1

)
γ0

hIw0
I
(
w0

I
)HhH

I = hIwEwH
E hH

I . (7.61)

Since wE 6= 0, we have a2 > 1. Following a similar step to (7.60), (7.61) for

the energy constraint, we obtain a2 < 1 such that the energy constraint is

met, which causes contradiction. Therefore, the optimal case is to employ

the information precoder only.
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Figure 7.5: Nt = 12, one ID, K = 1 EH receiver, γ0 = 16dB, DI=10m, DE=5m, η=0.35

To validate the above analyses, in Fig. 7.5 (a) and Fig. 7.5 (b) we show

the transmit power and the power ratio ρ with respect to the harvested en-

ergy requirement E0 respectively, where ρ represents the percentage that the
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information precoder accounts for the total transmit power and is defined as

ρ =
wH

I wI

PT X
. (7.62)

In Fig. 7.5, the point ‘A’ denotes the extreme point before which the har-

vested energy constraint is not active, and EA
0 = E1

th. The point ‘B’ is the ex-

treme point after which the energy precoder can be introduced, and EB
0 =E2

th.

When E0≤E1
th, there is only an information precoder and only the SINR con-

straint is active, in which case the required transmit power remains constant;

When E1
th < E0 < E2

th, both of the constraints are active; When E0 ≥ E2
th, the

energy precoder can be introduced, as validated in Fig. 7.5 (b), and the re-

quired transmit power is linearly increasing with the increasing harvested

energy requirement E0, given by (7.49).

When both of the SINR and harvested energy constraints are active, it

is difficult to compute the exact closed-form expression of w∗I . Nevertheless,

based on the observation that both of the SINR and energy constraints are

active with the increasing E0 when E0 ∈
[
E1

th,E
2
th

]
, we can obtain that the

optimal precoding vector wI is in the form of [177]

wI = α ·hH
I +β ·hH

⊥, (7.63)

where h⊥ is orthogonal to hI and can be expressed as h⊥ = hE −
hE hH

I hI

(hIhH
I )

. In

(7.63), α can be chosen as α =

√
γ0σ2

(hIhH
I )

. This structure ensures that the SINR

constraint is met, and the value of the complex weighting factor β dependent

on E0 can be obtained with the active energy harvesting constraint.

We summarise the optimal information precoder, energy precoder and

the corresponding transmit power for the case of one ID and one EH receiver

in Table 7.1.
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Condition of E0 w∗I w∗E P∗T X

E0 ≤
γ0ησ2(hIhH

E hE hH
I )

(hIhH
I )

2 +ησ2
√

γ0σ2

(hIhH
I )
·hH

I 0 γ0σ2

(hIhH
I )

γ0ησ2(hIhH
E hE hH

I )

(hIhH
I )

2 +ησ2 < E0 <
γ0ησ2(hE hH

E )
2

(hIhH
E hE hH

I )
+ησ2 α ·hH

I +β ·hH
⊥ 0 λIσ

2 +λE

(
E0
η
−σ2

)
E0 ≥

γ0ησ2(hE hH
E )

2

(hIhH
E hE hH

I )
+ησ2

√
E0−ησ2

η(1+c2)

(hE hH
E )
·hH

E c ·w∗I
E0−ησ2

η(hE hH
E )

Table 7.1: Optimal precoders and the corresponding transmit power required for
the case of one ID and one EH receiver

7.2.3.2 The case of K EH Receivers

We proceed to extend our analyses to multiple EH receivers, and show that

the optimal precoding scheme will be to employ the information precoder

only, as detailed below.

Only SINR Constraint is Active: This case is similar to the case where

there is only one EH receiver, and the optimal precoding scheme will be

to employ the information precoder only, which is obtained in (7.28). The

harvested energy requirement should satisfy

E0≤min
k

[
ηhk

EwIwH
I

(
hk

E

)H
+ησ

2
]
⇒E0≤min

k

γ0ησ2
[
hI
(
hk

E
)Hhk

EhH
I

]
(
hIhH

I
)2 +ησ

2

 .

(7.64)

Only Harvested Energy Constraints are Active: This corresponds to

the case where the harvested energy requirement is high, and we can obtain

λI = 0, since the SINR constraint is not active. It is easy to observe from the

stationarity conditions that each wi
E is parallel to wI , and therefore we can

express each wi
E as

wi
E = ci ·wI, ∀i ∈K . (7.65)

With the SINR constraint being over-satisfied, we can further obtain
K
∑

i=1
c2

i <

1
γ0

by following a similar approach in (7.46). Accordingly, the power ratio ρ

defined in (7.62) for the case of K > 1 EH receivers can be further obtained
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as

ρ =
wH

I wI

wH
I wI +

K
∑

i=1
c2

i wH
I wI

=
1

1+
K
∑

i=1
c2

i

⇒ ρ >
1

1+ 1
γ0

=
γ0

1+ γ0
. (7.66)

Note that by setting ci = 0, ∀i ∈K , we obtain ρ = 1, which means that the

optimality is achieved by employing the information precoder only.

Both Constraints are Active: In this case, similar to the derivation in

(7.55)-(7.57), we can obtain the total transmit power as

PT X = λIσ
2 +

K

∑
k=1

λ
k
E

(
E0

η
−σ

2
)
. (7.67)

Following a similar approach in Proposition 3, it is obtained by contradiction

that the optimality is achieved by employing only the information precoder,

and
(
wi

E
)∗

= 0, ∀i ∈K .

With the above mathematical analyses, we can conclude that the opti-

mality for the considered scenario is to employ the information precoder wI

only. This can also be observed based on the fact that EH receivers do not

need to decode the symbols, and therefore energy precoding is indeed not

necessary. Our contribution here is that we mathematically prove the above

observation and obtain the closed-form expressions for the special case of

K = 1 EH receiver with the above analyses.

7.2.3.3 SDR Approach to Solve P7.1

Based on the above analyses and by introducing WI = wIwH
I , DI = hH

I hI and

Dk
E =

(
hk

E
)Hhk

E , P7.1 can be simplified and further transformed into a SDP,

given by
P7.3 : min

WI
tr{WI}

s.t.
1
γ0

tr{DIWI} ≥ σ
2

tr
{

Dk
EWI

}
+σ

2 ≥ E0

η
, ∀k ∈K

WI � 0, rank{WI}= 1

(7.68)
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By dropping the rank-1 constraint for WI in P7.3, the relaxed optimisation

problem becomes convex, and can be efficiently solved by convex optimisa-

tion tools. When rank{W∗I }= 1, the optimal solution to P7.1 can be obtained

by employing the eigenvalue decomposition of W∗I , given by

w∗I = UΣΣΣ
1/2, (7.69)

where U and ΣΣΣ correspond to the eigenvectors and eigenvalues of W∗
I re-

spectively, and we have W∗I = UΣΣΣUH . It has been shown in [126, 127] that the

solution for the relaxed version of P7.3 satisfies

rank(W∗I )≤
√

K +1. (7.70)

When there are no more than 2 EH receivers in the system (K ≤ 2), explicitly

we have
√

K +1 < 2 and the obtained solution is guaranteed to be rank-1,

which means that in this case the semi-definite relaxation (SDR) is not a re-

laxation but an optimal solution to the original problem. When K > 2, while

the obtained solution cannot be guaranteed to be rank-1, we show below

in Table 7.2 that in most cases the obtained solutions still satisfy the rank-1

constraint and are therefore optimal, when the number of EH receivers K is

small. The results in Table 7.2 are obtained based on 5000 channel realisa-

tions with Nt = 12, η = 0.35, E0 = 5mW and γ0 = 10dB. On the other hand,

when the obtained rank of W∗I is larger than 1, we can obtain a feasible close-

to-optimal solution as

wI = τ ·w∗I = τ ·UΣΣΣ
1/2, (7.71)

where τ ≥ 1 and can be obtained as

τ = max


√√√√ γIσ2∣∣∣hIUΣΣΣ

1/2
∣∣∣2 ,
√√√√ E1−ησ2

η

∣∣∣h1
EUΣΣΣ

1/2
∣∣∣2 , ...,

√√√√ EK−ησ2

η

∣∣∣hK
E UΣΣΣ

1/2
∣∣∣2
 , (7.72)
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Number of Users (1+K) 1 2 3 4 5

Average rank of W∗I 1 1 1 1.0528 1.1736

Maximum rank of W∗I 1 1 1 2 2

Rank-1 percentage of W∗I 100% 100% 100% 94.72% 82.64%

Table 7.2: Average rank, maximum rank and rank-1 percentage of W∗
I for P7.3, Nt =

12, η = 0.35, E0 = 5mW, γ0 = 10dB

which guarantees that all the constraints in P7.1 are met. For the small-scale

MIMO system considered in the SWIPT technique in Chapter 7.2, the SDR

approach can be effectively applied to obtain the solution of P7.1 and the

optimisation problems in the subsequent chapters.

7.2.4 Low-Complexity Hybrid Precoding via SVD

The FD MIMO SWIPT precoding discussed in Chapter 7.2.3 requires a ded-

icated RF chain for each antenna element, which is inefficient in both the

hardware complexity and power consumption. Towards energy-efficient

SWIPT, we proceed to study the hybrid structure where the BS employs Nt
RF

(1≤ Nt
RF < Nt) RF chains, and the precoding is divided into the analog do-

main and the digital domain. Accordingly, we can express the transmit sig-

nal vector as

x = FRFFBBs, (7.73)

where s=
[
sI,s1

E ,s
2
E , ...,s

K
E
]T denotes the data symbol vector, and s∈C(K+1)×1.

FRF ∈ CNt×Nt
RF denotes the analog precoder implemented with phase shifter

networks. FBB ∈ CNt
RF×(K+1) represents the digital precoder and we decom-

pose it into

FBB =
[
fI, f1

E , f
2
E , ..., f

K
E
]
. (7.74)

We consider both a fully-connected structure and a partially-connected

structure as in Chapter 7.1.2 and Fig. 2.9, where M = Nt
/

Nt
RF denotes the

number of antennas connected to each RF chain.

In this section, a low-complexity hybrid precoding method for MIMO

SWIPT is proposed based on SVD, which serves as a benchmark to be com-
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pared with the proposed iterative method in Chapter 7.2.5. When the hybrid

precoding is employed, it is generally difficult to directly solve the joint op-

timisation problem, due to the non-convex constant modulus constraint of

the analog precoder that is in the form of (2.64)-(2.67). Therefore, to remove

the non-convex constant modulus constraint in the optimisation problem, it

is intuitive that we first design the analog precoder FRF , followed by the de-

sign of the low-dimensional digital precoder FBB with convex optimisation.

To be specific, we express the SVD of the channel as

H = UΣΣΣVH , (7.75)

where U and V = [v1,v2, ...,vNt ] are the left- and right-singular vectors. Each

phase ϕm,n of the analog precoder FRF is selected as

ϕm,n = θm,n, m ∈N , n ∈U , (7.76)

where U = {1,2, ...,Nt
RF} and θm,n is the phase of the m-th element in vn.

While we employ an analog precoding design based on SVD, other channel-

dependent analog designs can also be applied. With FRF obtained, the opti-

misation problem to obtain FBB can be formulated as

P7.4 : min
fI ,fi

E

‖FRF fI‖2 +
K

∑
i=1

∥∥FRF fi
E
∥∥2

s.t. γI ≥ γ0

Ek ≥ E0, ∀k ∈K

(7.77)

While the analyses in Chapter 7.2.3 is conducted for the FD precoding ap-

proaches, similar analyses can be performed for P7.4 of the hybrid precod-

ing, since in such case the analog precoder FRF can be regarded as a fixed

matrix and further incorporated into the channel. A similar conclusion can

be drawn that the optimality for P7.4 is to employ the low-dimensional infor-

mation precoder only, and therefore the SDP form of P7.4 can be simplified
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into
P7.5 : min

FI
tr
{

FRFFIFH
RF
}

s.t. tr
{

DIFRFFIFH
RF
}
≥ γ0σ

2

tr
{

Dk
EFRFFIFH

RF

}
≥ E0

η
−σ

2, ∀k ∈K

FI � 0, rank{FI}= 1

(7.78)

where FI = fIfH
I . By dropping the rank-1 constraint, P7.5 can also be effec-

tively solved. As the rank of the obtained FI is only related to the number of

users (1+K), the rank result and approach in Chapter 7.2.3.3 can be trivially

extended to the hybrid case of P7.5.

Extension to Partially-Connected Structures: When partially-connected

structures are considered, each fp
k ∈ CM×1. Similar to the designs for

partially-connected structures in Chapter 7.1, each entry of fp
k can be ob-

tained as [
fp
k

]
m =

1
M

e jθn,k , k = (n−1)M+m. (7.79)

where θn,k denotes the phase of the k-th entry in vn. While the partially-

connected structures require an increased transmit power PT X to achieve

the same performance requirements compared to the fully-connected struc-

tures, we further note that the total power consumption PBS for partially-

connected structures will in fact be much lower than the FD case and fully-

connected structures, due to the reduced number of RF chains and phase

shifters required. We shall quantify this favourable tradeoff in terms of the

total power consumption at the BS in Chapter 7.2.7.

7.2.5 An Iterative Approach via a Geometrical Representa-

tion

Based on the results given in Table 7.1 and the analyses in Chapter 7.2.3, it is

observed that the optimal precoding strategy is to employ the information

precoder wI only (by noting that each ci can be equal to 0). By considering

the effective channel expression, similar results can be derived for the hybrid
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case. These two observations lead to

W =
[
wI,0Nt×K] , FBB =

[
fI,0(K+1)×K

]
. (7.80)

Accordingly, we propose an iterative approach where we alternately update

the analog precoder and the digital precoder. To be more specific, for the

design of the analog precoder FRF , instead of employing the SVD, we pro-

pose to minimise the Euclidean distance between the optimal FD precoder

and the hybrid precoder, which can be formulated as

P7.6 : min
FRF
‖W−FRFFBB‖2

F

s.t. FRF ∈F

(7.81)

where we denote F as the set that consists of the matrices that satisfy the

constant modulus constraint for each of their entries. Based on (7.80), the

objective function of P7.6 can be further decomposed into

‖W−FRFFBB‖2
F

=
∥∥∥[wI,0Nt×K]−FRF

[
fI,0(K+1)×K

]∥∥∥2

F

=‖wI−FRF fI‖2
F

=
Nt

∑
i=1

∣∣[wI]i− fi
RF fI

∣∣2,
(7.82)

where we note that each [wI]i is a scalar. In (7.82), we decompose FRF =[(
f1
RF
)T

,
(
f2
RF
)T

, ...,
(

fNt
RF

)T
]T

and fi
RF ∈C1×(K+1) is the i-th row of FRF . As can

be observed, the objective function is decomposed into Nt independent sub-

functions by row, and therefore the optimisation problem P7.6 is equivalent

to minimising each of the Nt independent sub-problems. Accordingly, we
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formulate the i-th sub-problem as

P i
7.7 : min

fi
RF

∣∣[wI]i− fi
RF fI

∣∣
s.t. fi

RF ∈ G

(7.83)

where G denotes the set of row vectors that satisfy the constant modulus

constraint for each of their entries. For simplicity we introduce

[t]m =
[
fi
RF
]

m [fI]m , (7.84)

and the optimisation problem can be further transformed into

P i
7.8 : min

fi
RF

|ui|

s.t. ui = [wI]i−
K+1

∑
m=1

[t]m

fi
RF ∈ G

(7.85)

7.2.5.1 Optimal Analog Precoder

As each entry of fi
RF is of constant modulus, therefore the multiplication of

each
[
fi
RF
]

m to the corresponding [fI]m in (7.84) is equivalent to an angle ro-

tation in the complex plane. Moreover, since [wI]i in P i
7.8 is a scalar, we can

therefore employ a geometric representation to arrive at an optimal solution

efficiently. An explanatory geometrical representation for the case of one ID

and K = 2 EH receivers is shown in Fig. 7.6, where the dashed brown arrow

represents the optimal FD solution [wI]i, the solid brown arrow denotes the

value of the function vi (m) that is to be introduced in (7.87), and the solid

blue arrows denote each entry in fI . We denote θ0 as the phase of [wI]i, θm as

the phase of [fI]m, and we assume θ0, θm ∈ [0,2π), as shown in Fig. 7.6.

Geometrically, it is observed that the optimal solution for fi
RF that min-

imises |ui| in P i
7.8 is to rotate each [fI]m such that each resulting [t]m is collinear

to [wI]i. Accordingly, we introduce the algorithm employed to solve the sub-
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(a) Step 1: Rotate [fI ]3 to the
opposite side of [wI ]i

(b) Step 2: Rotate [fI ]2 to the
opposite side of [wI ]i

(c) Step 3: Rotate [fI ]1 to the
same side of [wI ]i

Figure 7.6: Geometric interpretation of P i
7.9 and the solution for the example of one

ID and K = 2 EH receivers

problem P i
7.8 based on successive phase rotation. To be specific, to achieve

collinearity for each resulting [t]m, the phase of the corresponding
[
fi
RF
]

m can

be obtained based on Fig. 7.6 as

ϕm = θ0−θm, or ϕm = θ0 +π−θm, (7.86)

which is dependent on whether [fI]m is rotated to the same direction of [wI]i

or the opposite direction of [wI]i. Define a function vi with respect to m that

represents the difference between the optimal FD precoder and the sum of

the previously rotated components of fI as

Function : vi (m) = [wI]i−
m−1

∑
j=1

[t] j , (7.87)

and we further define vi (1) = [wI]i. vi (m) therefore represents the residual

portion of [wI]i to be cancelled, and it is observed that the value of each ϕm

is dependent on vi (m). More specifically, from the definition of vi (m), each[
fi
RF
]

m should be rotated to the opposite side of vi (m). Moreover, to guar-

antee optimum and that the resulting objective function |ui| in P i
7.8 is min-

imised, we should sort the elements in fI in the descending order of ampli-

tude, and the elements with larger amplitudes should be rotated first. An

illustrative example is given in Fig. 7.6, where [fI]3 is firstly rotated, followed
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by the rotation of [fI]2. [fI]1 has the smallest amplitude and is therefore ro-

tated at last. We summarise the above algorithm to obtain fi
RF in Algorithm

7.4.

Algorithm 7.4 Optimal Analog Precoding Solution for P i
7.8

input : [wI]i, fI
output : fi

RF
θ0 = arg{[wI]i}, f̂I = sort(fI,d);
for m = 1 : Nt

RF do
Obtain m0 = find

{[
f̂I

]
m
= fI

}
, θm0 = arg

{
[fI]m0

}
;

Calculate [vi]m;
if arg{[vi]m}= arg{[wI]i} then

ϕm0 = θ0 +π−θm0 ;
end if
if arg{[vi]m}= π + arg{[wI]i} then

ϕm0 = θ0−θm0 ;
end if[
fi
RF
]

m0
= 1

Nt
e jϕm0 .

end for

In Algorithm 7.4, â = sort(a,d) denotes the function that sorts the ele-

ments of a in a descending order of amplitude, and the re-ordered vector is

denoted as â. The function x = find{a = b} means that [b]x = a, and we de-

note arg{a} as the phase of a. With the above algorithm, the optimal fi
RF can

be efficiently obtained and the resulting |ui| is guaranteed to be the minimal.

We perform Algorithm 7.4 to calculate each fi
RF for Nt times, and the optimal

analog precoder FRF can be obtained.

7.2.5.2 Iterative Algorithm
It is observed that the design of each fi

RF in Algorithm 7.4 requires the knowl-

edge of the digital precoder fI , and accordingly we propose an iterative de-

sign where we alternately update FRF and FBB until convergence or a max-

imum number of iterations is reached. The proposed algorithm is sum-

marised in Algorithm 7.5, where wI is the optimal FD precoder for P7.3 in

Chapter 7.2.3, F0
BB is the initial low-dimensional digital precoder of the hy-

brid precoding obtained from P7.5 in Chapter 7.2.4, and Nmax denotes the
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maximum iteration number. We introduce ∆ as a variable that represents

the convergence accuracy, and ∆th denotes the accuracy threshold.

Algorithm 7.5 The Iterative Hybrid Precoding Design
input : wI , F0

BB
output : F∗RF , F∗BB

n = 0, W(0)
h = 0;

while n≤ Nmax and ∆≥ ∆th do
Obtain f(n)I from F(n)

BB based on (7.74);
Obtain F(n+1)

RF by Algorithm 7.4 with f(n)I ;
Obtain F(n+1)

BB by solving P7.5 with F(n+1)
RF ;

W(n+1)
h = F(n+1)

RF F(n+1)
BB ;

∆ =
∥∥∥W(n+1)

h −W(n)
h

∥∥∥
n = n+1;

end while
F∗RF = F(n)

RF , F∗BB = F(n)
BB .

Convergence Discussion: It has been shown in Table 7.2 that for the

considered small-scale multiple-antenna system, in most cases the SDR ap-

proach can obtain the optimal rank-1 solution. In this case, since the sub-

problems to obtain FRF and FBB in each iteration are solved optimally, the

iterative design in Algorithm 7.5 is guaranteed to converge [69, 121]. Nev-

ertheless, when the rank of the obtained solution is larger than 1, while the

convergence cannot be explicitly proven, a feasible close-to-optimal solution

can be obtained based on (7.71), (7.72), and it is observed in our simulations

that the proposed iterative algorithm is also shown to be convergent. Fur-

thermore, our approach also includes a maximum number of iterations Nmax

to terminate the iterations and return a solution.

Extension to Partially-Connected Structures: When partially-connected

structures are considered for the proposed iterative design, each fi
RF in (7.82)

only has one non-zero element, and we only need to rotate this entry to the

opposite side of [wI]i, which greatly simplifies the design. We summarise the

corresponding algorithm to obtain FRF for partially-connected structures in

Algorithm 7.6, where the function dxe denotes the minimum integer that is
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not smaller than x.

Algorithm 7.6 Analog Precoder of the Iterative Scheme for Partially-
Connected Structures

input : wI , fI
output : FRF
for i = 1 : Nt do

fi
RF = 01×(K+1);

Obtain [wI]i, then θ0 = arg{[wI]i};
Calculate m0 =

⌈ i
M

⌉
;

θm0 = arg
{
[fI]m0

}
, φm0 = θ0 +π−θm0 ;[

fi
RF
]

m0
= e jφm0 ;

end for

FRF =

[(
f1
RF
)T

,
(
f2
RF
)T

, ...,
(

fNt
RF

)T
]T

.

7.2.6 Computational Cost Analysis
For both proposed techniques, it is observed that the dominant complex-

ity arises from solving the optimisation problems. For each optimisa-

tion problem, based on [167, 168] the interior-point algorithm for solv-

ing the dual problem of an M-dimensional optimisation with N variables

requires O
{√

NM
(
N3M2 +N2M3)} floating-point operations. For the FD

method based on the optimisation problem P7.3, WI and each Wi
E are Nt-

dimensional, and there is one ID and K EH receivers in the system, which

leads to M = Nt , and N = K + 1. For the proposed hybrid precoding based

on SVD, we can similarly obtain that M = N = K +1, and the computational

cost of the proposed iterative scheme will be Nmax times higher than that of

the hybrid precoding based on SVD, since the SDP needs to be performed

Nmax times, as observed in Algorithm 7.5. Accordingly, we can obtain the

computational cost of each scheme in terms of the number of floating-point

operations, which can be expressed as

CFully = O
{√

(K +1)Nt

[
(K +1)3N2

t +(K +1)2N3
t

]}
, (7.88)

CSV D
Hybrid =O

{√
(K +1)(K +1)

[
2(K +1)3(K +1)2

]}
=O

{
2(K +1)6

}
, (7.89)
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Schemes
Number of UEs

1 ID, 3 EHs 1 ID, 4 EHs 1 ID, 5 EHs
Fully-digital O

(
2.6×105) O

(
4.7×105) O

(
7.9×105)

Hybrid, SVD O
(
8.1×103) O

(
3.1×104) O

(
9.3×104)

Hybrid, Iterative O
(
3.2×104) O

(
1.2×105) O

(
3.7×105)

Table 7.3: Computational complexity of the fully-digital scheme and the hybrid
schemes for Nt = 12, Nmax = 4

CIterative
Hybrid = O

{
Nmax (K +1)

[
2(K +1)3(K +1)2

]}
= O

{
2Nmax(K +1)6

}
.

(7.90)

It is observed that the computational costs of both hybrid techniques are ir-

relevant to the number of transmit antennas Nt at the BS, and the complexity-

reduction gain will be higher when Nt increases. The computational cost of

each method in a representative MIMO SWIPT scenario is explored in Ta-

ble 7.3 below, where the number of transmit antennas at the BS is Nt = 12.

It is observed that compared to the FD case, both of the proposed hybrid

precoding approaches require less computational costs, and the hybrid ap-

proach based on SVD is the most computationally efficient one.

7.2.7 Power Consumption Model

To demonstrate the significant power savings introduced by the hybrid

analog-digital architectures, we introduce the power consumption model

employed in the simulations before presenting the numerical results. For

the FD case, the analog phase shifters are not needed. Accordingly, based

on [37, 81] the power consumption model at the BS is given by

PFD
BS = Nt (Nt +1)PPA +PBB +Nt (PRFC +PDAC) ,

PFully
BS = Nt

(
Nt

RF +1
)

PPA +NtNt
RFPPS +PBB +Nt

RF (PRFC +PDAC) ,

PPartially
BS = NtPPA +NtPPS +PBB +Nt

RF (PRFC +PDAC) ,

(7.91)

where PFD
BS , PFully

BS , and PPartially
BS denote the total power consumption at the

BS for the FD case, hybrid fully-connected and hybrid partially-connected

structures, respectively. In (7.91), PPA = (1/η0)PT X is the power consumed at
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the power amplifier to generate the transmit power PT X , with η0 being the

power amplifier efficiency. PPS represents the power consumption for phase

shifters, PRFC the power consumption for the RF chains, PDAC the power con-

sumption for the DACs, and PBB the power consumption for the baseband

processing.

7.2.8 Numerical Results
In this section, we conduct Monte Carlo simulations to evaluate the perfor-

mance of the proposed hybrid schemes. There are a total number of Nt = 12

transmit antennas at the BS, and we consider one ID and K = 3 EH receivers

in the system. The typical values of the power consumption for each hard-

ware component follow [81]. The simulation parameters are summarised in

Table 7.4, and remain constant throughout the simulations unless otherwise

stated.
Simulation Parameters Values Simulation Parameters Values

Antenna Number at the BS, Nt 12 Distance of EH receivers and BS, Dk
E (m) 5

Number of ID 1 Channel noise power, σ2 (mW) 0.1
Number of EH receivers, K 3 Energy transfer efficiency, η 0.35
Number of RF chains, Nt

RF 4 Power amplifier efficiency, η0 0.5
Propagation constant, α0 1 Power of phase shifters, PPS (mW) 30

Pathloss coefficient, β 2 Power of RF chains, PRFC (mW) 40
Shadow fading, CI , Ck

E 1 Power of DAC, PDAC (mW) 200
Distance of ID and BS, DI (m) 10 Power of baseband processing, PBB (mW) 5

Table 7.4: Simulation Parameters

We compare our proposed schemes with the FD method, and the fol-

lowing abbreviations are applied for clarity:

• “Fully-digital”: conventional FD approach at the BS, P7.3;
• “SVD, Fully/Partially”: the proposed hybrid precoding based on the

SVD in Chapter 7.2.4;
• “Iterative, Fully/Partially”: the proposed iterative hybrid design by Al-

gorithm 7.5 in Chapter 7.2.5.

In Fig. 7.7, we evaluate the convergence of the proposed iterative algo-

rithm by plotting the value of the transmit power and the value of ∆ with



7.2. Hybrid Precoding for Energy-Efficient SWIPT 209

respect to the iteration number n. We select F0
BB as the digital precoder ob-

tained by P7.5 in Chapter 7.2.4. It can be observed that the proposed iterative

scheme is convergent within n = 4 iterations. Furthermore, the performance

gap compared to the FD case is marginal.
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Figure 7.7: Convergence of the iterative algorithm for Nt = 12, one ID, K = 3 EH
receivers, E0 = 5mW, γ0 = 10dB

Fig. 7.8 presents the required transmit power PT X and total power con-

sumption at the BS PBS of each technique with respect to the increasing SINR

target of the ID, where the harvested energy requirement for each EH re-

ceiver is E0 = 5mW. In Fig. 7.8 (a), it is observed that the FD case requires

the lowest transmit power. For both of the proposed hybrid precoding, the

partially-connected structures require a higher transmit power than fully-

connected case, as only part of the channel can be exploited for the ana-

log precoder. It is also observed that the proposed iterative hybrid design

achieves an improved performance compared to the hybrid precoding based

on SVD, especially for the partially-connected structures, and the iterative

design with fully-connected structures can achieve a very close performance

to the FD case due to the optimal analog precoding design. When we con-

sider the total power consumption at the BS, on the contrary, it is interesting
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Figure 7.8: Transmit power PT X and total power at the BS PBS required for Nt = 12,
one ID, K = 3 EH receivers, E0 = 5 mW, Nmax = 4

to observe from Fig. 7.8 (b) that the FD case consumes the highest power, and

the hybrid AD structures require a much lower power due to the reduced

number of RF chains and phase shifters. The partially-connected structures

require the lowest total power consumption at the BS and are therefore the

most promising architectures for power efficient transmission.

In Fig. 7.9, we compare the required transmit power and the total power

at the BS with an increasing harvested energy requirement for each EH re-

ceiver, where the SINR target for the ID is γ0 = 10dB. It can be observed that

both the transmit power and the total power consumption at the BS are in-

creasing with the increase in the harvested energy requirement E0. In both

figures, the proposed iterative algorithm outperforms the hybrid precoding

based on SVD, and the performance gain is more significant for the partially-

connected structures due to the optimal analog precoding design. In Fig. 7.9

(b), it is shown that the iterative hybrid method with partially-connected

structures requires the lowest total power consumption at the BS.

In Fig. 7.10, we compare the performance of the hybrid approaches with

respect to the number of RF chains. With a reduced number of RF chains,
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Figure 7.9: Transmit power PT X and total power at the BS PBS required for Nt = 12,
one ID, K = 3 EH receivers, γ0 = 10 dB, Nmax = 4
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Figure 7.10: Transmit power PT X and total power at the BS PBS required for Nt = 12,
one ID, K = 3 EH receivers, γ0 = 10 dB, Nmax = 4

the performance gap between the FD case and hybrid structures is larger,

and the proposed iterative hybrid approach is shown to be less sensitive to

the reduction in the number of RF chains. It is also observed that the per-

formance gains of the proposed iterative algorithm over the low-complexity

hybrid approach are more significant with a smaller number of RF chains.
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In Fig. 7.10 (b), we note that the total power consumption at the BS is jointly

decided by the transmit power in Fig. 7.10 (a) and the number of RF chains,

where the proposed iterative algorithm still outperforms the low-complexity

hybrid precoding based on SVD.

7.3 Summary
In this chapter, we first study the hybrid AD precoding techniques for

mmWave communication systems, where the precoding methods are pro-

posed by selecting the virtual paths. Three distinct algorithms are proposed,

and each achieves a different performance-complexity tradeoff. Numerical

results have shown that the proposed techniques with fully-connected struc-

tures can approach the FD precoding method. We further extend our study

on the hybrid structure to energy-efficient MIMO SWIPT systems with lim-

ited RF chains, where we consider the scenario of one ID and several separate

EH receivers. By analytically proving that only an information precoder is

required in the scenario under study, we propose an iterative hybrid algo-

rithm that exploits this observation. It is shown that the hybrid structures re-

quire much less power to achieve the same performance as the FD case. Both

studies in this chapter have revealed that the hybrid structures are promising

for the future multiple-antenna systems.
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Chapter 8

Massive MIMO 1-Bit DAC

Transmission with Symbol Scaling

This chapter is based on our works in [J1], [C1], [C2].

8.1 Introduction
In this chapter, we focus on the downlink precoding designs for the large-

scale MIMO systems in the presence of 1-bit DACs. Towards 5G-and-beyond

wireless communication systems, massive MIMO systems [9] have been

shown to greatly improve the spectral efficiency, and therefore have received

increasing research attention in recent years [9, 10]. Nevertheless, with a

large number of antennas employed at the BS, the hardware complexity and

the resulting power consumption have also increased dramatically, which

hinders the practical implementation of massive MIMO. To achieve a com-

promise between performance, hardware complexity and the consequent

power consumption, one potential technique for massive MIMO is to reduce

the number of RF chains at the BS by employing the hybrid AD structure

[11, 23], which has been introduced in Chapter 7.

In addition to the hybrid structures, another potential technique, which

is the focus of this chapter, is to reduce the cost and power consumption per

RF chain by employing very low-resolution DACs instead of high-precision

DACs. It has been shown in [182] that DACs are one of the dominant power-
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consuming hardware components in the downlink, whose power consump-

tion grows exponentially with the resolution and linearly with the band-

width. Therefore, employing low-resolution DACs, especially 1-bit DACs,

can greatly reduce the power consumption per RF chain and the resulting

total power consumed at the BS. When 1-bit DACs are employed, the out-

put signal at each antenna element is equivalent to the constant-envelope

symbol from a QPSK constellation, which enables the use of low-cost power

amplifiers (PAs) and can further reduce the hardware complexity.

In the existing literature, most recent studies have focused on the per-

formance analyses for massive MIMO uplink with low-resolution ADCs, es-

pecially for the 1-bit case [25, 26, 183], where it is shown that the number

of quantisation bits can be reduced while a comparable performance is still

achievable. For the case of downlink transmission with 1-bit DACs, there

have been an increasing number of studies, due to the benefits mentioned

above [16, 27, 28, 184, 185]. In [16], a simple quantised ZF method is consid-

ered, where the transmit signal vector is obtained by a direct quantisation

on the ZF-precoded signals. The authors further analyse the performance

of the quantised ZF method, and show that it outperforms the maximum

likelihood (ML) encoder in the low-to-medium SNR regime. In [27, 184],

the quantised linear precoding techniques based on MMSE are proposed,

whose performance is shown to be superior to the quantised ZF approach

in [16]. In [185], a non-linear symbol perturbation technique is introduced

in 1-bit massive MIMO downlink for QPSK modulation, while in [28] an it-

erative non-linear precoding scheme named ‘Pokemon’ is introduced via a

biconvex relaxation approach, where the proposed algorithm directly de-

signs the transmit signal vector based on the MMSE criterion. Nevertheless,

these MMSE-based approaches may be sub-optimal, as they ignore the fact

that interference can be exploited on an instantaneous basis in [38, 41, 50, 51,

55].

In this chapter, we focus on the massive MIMO downlink systems and
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consider multi-user precoding schemes with 1-bit DACs. For massive MIMO

systems with 1-bit DACs, symbol-level operations are required as the output

signals are dependent on the data symbols, which creates the opportunity to

exploit the formulation of CI. It is this aspect of the transmission that allows

us to observe the interference from an instantaneous point of view, and ex-

ploit it constructively [41, 50, 51]. We firstly propose a non-linear mapping

scheme based on the CI formulation, where we directly design the quan-

tised transmit signal vector. Nevertheless, due to the constraint on the out-

put signals of 1-bit DACs, the resulting optimisation problem is shown to be

non-convex. To solve this problem, we first apply a relaxation on the math-

ematical constraint resulting from the use of 1-bit DACs, such that the opti-

misation problem becomes convex. Subsequently, we apply an element-wise

normalisation on the signal vector obtained from the relaxed optimisation to

meet the constraint on the output signals of 1-bit DACs.

We further propose a low-complexity symbol scaling algorithm based

on a coordinate transformation on the problem formulation of CI, where

we directly select the output signal of 1-bit DACs for each antenna element

on a sequential basis, and a relaxation is therefore no longer needed. The

proposed symbol scaling approach consists of three stages: an initialisation

stage where we decide the output signals for some antenna elements whose

channel coefficients satisfy certain requirements, an allocation stage where

we sequentially select the output signals for the residual antenna elements,

and a refinement stage where we check whether the performance with the

obtained signal vector can be further improved based on a greedy algorithm.

Both the ‘Sum-Max’ and the ‘Max-Min’ criteria are considered in the alloca-

tion stage, and the output signal vector that returns the best performance is

then obtained within the above two criteria. We further study the computa-

tional costs of the proposed optimisation-based and symbol scaling schemes

in terms of the required floating-point operations. Numerical results reveal

the advantages of the proposed techniques in terms of BER performance in
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various scenarios. In terms of the computational complexity, the complex-

ity of the symbol scaling scheme is negligible compared to that of the non-

linear mapping approach, while its performance is superior to ‘Pokemon’

when their computational costs are similar, which favours its usefulness in

practice.

For reasons of clarity, we summarise the contributions of this chapter

as:

• We propose a non-linear mapping scheme for massive MIMO with 1-

bit DACs, where we directly optimise the transmit signal vector. A two-

step relaxation-normalisation is employed to solve the non-convex op-

timisation problem.
• Based on a coordinate transformation of the CI formulation, we further

propose a low-complexity symbol scaling approach where we directly

select the quantised signal on each antenna element via a three-stage

process.
• We further study the computational costs of the optimisation-based

non-linear mapping method and the symbol-scaling approach in terms

of the required floating-point operations, which reveals the advantages

of the proposed symbol-scaling approach.

8.2 System Model
We consider a massive MIMO downlink, where 1-bit DACs are employed

at the BS, as depicted in Fig. 8.1. As we focus on the transmit-side process-

Figure 8.1: Massive MIMO downlink system model with 1-bit DACs
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ing, ideal ADCs with infinite precision are assumed to be employed at each

receiver. The BS with Nt transmit antennas is communicating with K single-

antenna users simultaneously in the same time-frequency resource, where

K� Nt . We focus on the downlink precoding designs and perfect CSI is as-

sumed, while we also numerically study the performance of the proposed

schemes with imperfect CSI in Chapter 8.6. Following the closely-related

literature [16, 27, 184, 185], the symbol vector is assumed to be from a nor-

malised PSK constellation. We denote the data symbol vector as s ∈ CK×1,

and the unquantised signal vector that is formed based on s as x̂T ∈ CNt×1.

Then, the unquantised signal vector x̂T can be expressed as

x̂T = B (s) , (8.1)

where B denotes a general transformation. When a linear precoding ap-

proach is employed, B represents the linear precoding matrix that is multi-

plied to s before quantisation, while in the case of non-linear precoding, B

refers to a non-linear mapping scheme to form the transmit signals depen-

dent on s. With 1-bit DACs employed, the output signal vector is obtained

as

xT = Q (x̂T ) . (8.2)

In (8.2), Q denotes the 1-bit quantisation on both the real and imaginary part

of each entry in x̂T . We denote xn as the n-th entry in xT , and in this paper

each xn is normalised to satisfy

xn ∈
{
± 1√

2Nt
± 1√

2Nt
· j
}
, ∀n ∈ {1,2, · · · ,Nt} . (8.3)

The above normalisation guarantees that ‖xT‖2
F = 1, and accordingly we can

express the received signal at the k-th user as

yk =
√

P ·hkxT +nk, (8.4)
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where hk ∈ C1×Nt denotes the flat-fading Rayleigh channel with each entry

following a standard complex Gaussian distribution. nk denotes the additive

Gaussian distributed noise at the receiver with zero mean and variance σ2. P

is the total available transmit power for the antenna array, and for simplicity

in this paper we assume uniform power allocation for the antenna array.

8.3 1-Bit Transmission Scheme based on Con-

structive Interference

In this section, we present the proposed optimisation-based methods by ex-

ploiting the CI. While the channel for massive MIMO is near-orthogonal, the

imperfect hardware components in the form of 1-bit DACs introduce inter-

ference, which can be exploited by CI. To be more specific, we directly design

the transmit signal vector xT based on the CI formulation, which leads to the

following optimisation

P8.1 : max
xT

t

s.t. hkxT = λksk, ∀k ∈K

[ℜ(λk)− t] tanθt ≥ |ℑ(λk)| , ∀k ∈K

xn ∈
{
± 1√

2Nt
± 1√

2Nt
j
}
, ∀n ∈ {1,2, · · · ,Nt}

t ≥ 0

(8.5)

It is observed that the optimisation problem P8.1 is non-convex due to the

output signal constraint for the 1-bit DACs in (8.5). To solve the above non-

convex optimisation, we adopt a two-step approach.

8.3.1 Relaxation

In the first step, we relax the strict modulus constraint on each xn for both

the real and imaginary part, and the resulting relaxed constraint can be ex-
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pressed as

|ℜ(xn)| ≤
1√
2Nt

, |ℑ(xn)| ≤
1√
2Nt

, ∀n ∈ {1,2, · · · ,Nt} . (8.6)

The optimisation problem P8.1 is reformulated into a relaxed version P8.2,

given by
P8.2 : max

x̂T
t

s.t. hkx̂T = λksk, ∀k ∈K

[ℜ(λk)− t] tanθt ≥ |ℑ(λk)| , ∀k ∈K

|ℜ(x̂n)| ≤
1√
2Nt

, ∀n ∈ {1,2, · · · ,Nt}

|ℑ(x̂n)| ≤
1√
2Nt

, ∀n ∈ {1,2, · · · ,Nt}

t ≥ 0

(8.7)

where we denote x̂n as the n-th entry in the relaxed transmit signal vector

x̂T . The resulting P8.2 is convex and can be solved with convex optimisation

tools.

8.3.2 Normalisation

The solution obtained from the relaxed optimisation P8.2 cannot always

guarantee the equality on both the real and imaginary part of x̂n. To force

the constraint of 1-bit transmission, the elements of the 1-bit DAC output xT

are obtained as

xn =
ℜ(x̂n)√

2Nt · |ℜ(x̂n)|
+

ℑ(x̂n)√
2Nt · |ℑ(x̂n)|

· j, ∀n ∈ {1,2, · · · ,Nt} . (8.8)

We further note that, while we perform a relaxation on the 1-bit DAC con-

straint on each xn in P8.1, it turns out that most entries of the obtained x̂T

from the relaxed problem P8.2 already meet the requirement for 1-bit quan-

tisation, i.e. strict equality is satisfied for these entries in the case of massive

MIMO. Accordingly, there exist only a small number of x̂n that need to be

normalised to satisfy the constraint on the output signals for 1-bit DACs.
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Antenna number Nt 16 32 48 64 80 96 112 128
Ratio η 20.52% 10.8% 7.28% 5.46% 4.37% 3.65% 3.13% 2.73%

Table 8.1: η with respect to the number of transmit antennas, K = 4, 500 channel
realisations

Moreover, to evaluate the deviation of the relaxed optimisation P8.2 from

the original problem P8.1, we define nℜ and nℑ as the number of entries in

the obtained x̂T , whose absolute values are smaller than 1√
2Nt

for the real and

imaginary part, respectively. We further introduce

η =
nℜ +nℑ

2Nt
(8.9)

as the ratio of the number of entries that do not satisfy the 1-bit transmis-

sion to the total number of entries in x̂T , and this ratio therefore represents

the deviation of the solution obtained by the relaxed problem from the orig-

inal problem. It is obtained that 0≤ η ≤ 1, and P8.2 is equivalent to P8.1 if

η = 0. It is also observed that a smaller value of η means that the relaxed

optimisation is closer to the original optimisation.

To study this numerically, we present the value of η with respect to the

number of antennas in Table 8.1, where we have assumed a total number of

K = 4 users in the downlink system, and the result is based on 500 channel

realisations. It is observed that the ratio η decreases with the increase in the

number of transmit antennas, which means that the solution obtained via the

relaxed optimisation problem P8.2 can be regarded as asymptotically opti-

mal with an increasing number of transmit antennas in the case of massive

MIMO.

8.4 Proposed Low-Complexity Symbol Scaling

Approach
While the above non-linear mapping method can be relaxed into a convex

optimisation problem, the corresponding computational complexity is still
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prohibitively high as the variable dimension is equal to the number of trans-

mit antennas. We study this mathematically and numerically in Chapter

8.5 and 8.6, respectively. Therefore in this section, we propose a three-stage

symbol scaling approach, whose computational cost is much lower. It will

be shown in the numerical results that for the small-scale MIMO systems,

the low-complexity method even outperforms the optimisation-based non-

linear mapping scheme and achieves the best performance, since no relax-

ation or normalisation is required for this approach. In the case of mas-

sive MIMO, it also achieves a comparable performance to the proposed non-

linear mapping scheme.

8.4.1 A New Look at the Constructive Interference Criteria

To introduce the proposed symbol scaling scheme, we first perform a co-

ordinate transformation on the constructive interference constraint. To be

specific, for N-PSK modulations, each data symbol in the conventional real-

imaginary plane can be expressed as

s(l) = e j·[ 2π

N (l−1)+ π

4 ], l ∈ {1,2, · · ·N} , (8.10)

where s(l) denotes the l-th constellation point. Given the constellation points,

the equations that represent the two detection thresholds for a specific con-

Figure 8.2: Decomposition along the detection thresholds for 8PSK



222 Chapter 8. Massive MIMO 1-Bit DAC Transmission with Symbol Scaling

stellation point s(l) can be expressed as

yA(l) = tan
[

2π

N
(l−1)+

π

4
− π

N

]
· x = tan

[
2π

N
· l + π

4
− 3π

N

]
· x,

yB(l) = tan
[

2π

N
(l−1)+

π

4
+

π

N

]
· x = tan

[
2π

N
· l + π

4
− π

N

]
· x.

(8.11)

For the proposed symbol-scaling methods, without loss of generality we as-

sume the data symbol for user k is sk = s(l). We then propose to decompose

the constellation points along their corresponding two detection thresholds,

expressed as

sk = s(l) = sAk + sBk , (8.12)

where sAk is parallel to yA(l) and sBk is parallel to yB(l). Accordingly, sAk and sBk can

be expressed as

sAk =
e j·( 2π

N ·l+
π

4−
3π

N )

ρ
= Aℜ

k + j ·Aℑ

k , sBk =
e j·( 2π

N ·l+
π

4−
π

N)

ρ
= Bℜ

k + j ·Bℑ

k , (8.13)

where
(

Aℜ

k ,A
ℑ

k

)
and

(
Bℜ

k ,B
ℑ

k

)
denote the coordinates of the bases sAk and sBk

in the real-imaginary plane, respectively. The constant ρ is a scaling factor to

guarantee that sk = sAk + sBk . Note that for a normalized N-PSK modulation,

|sk|= 1 and ρ is accordingly obtained as

ρ =
∣∣∣e j·( 2π

N ·l+
π

4−
3π

N ) + e j·( 2π

N ·l+
π

4−
π

N)
∣∣∣ . (8.14)

The above decomposition is also shown geometrically in 8.2, where we

employ a 8-PSK modulation as an example. Specifically, for the considered

constellation point in 8.2, we obtain ~OS = s(1), which further leads to

sAk =
e j·( 2π

8 ·1+
π

4−
3π

8 )

ρ
=

e j· π8∣∣∣e j· π8 + e j· 3π

8

∣∣∣ , sBk =
e j·( 2π

8 ·1+
π

4−
π

8 )

ρ
=

e j· 3π

8∣∣∣e j· π8 + e j· 3π

8

∣∣∣ .
(8.15)

Then for each k, instead of employing a complex scaling value λk that

is multiplied by sk, with the above formulation (8.12)-(8.14) we introduce a
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symbol scaling approach where we decompose the noiseless received signal

for user k along the two corresponding detection thresholds of sk, given by

hkxT = α
A
k sAk +α

B
k sBk , (8.16)

where

α
A
k ≥ 0, α

B
k ≥ 0, ∀k ∈K (8.17)

are scaling factors. We observe that a larger value of αA
k or αB

k represents a

larger distance to the detection threshold, and by expanding (45) using the

coordinate transformation, we can obtain a generic expression of αA
k and αB

k

as a function of the transmit signal vector, given by (see Appendix D)

α
A
k =

Bℑ

k hℜ

k −Bℜ

k hℑ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℜ
T −

Bℑ

k hℑ

k +Bℜ

k hℜ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℑ

T ,

α
B
k =

Aℜ

k hℑ

k −Aℑ

k hℜ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℜ
T +

Aℜ

k hℜ

k +Aℑ

k hℑ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℑ

T .

(8.18)

In (8.18), for simplicity we have employed the following notation

xℜ
T = ℜ(xT ) , xℑ

T = ℑ(xT ) , hℜ

k = ℜ(hk) , hℑ

k = ℑ(hk) . (8.19)

By further denoting

Ak =
Bℑ

k hℜ

k −Bℜ

k hℑ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

, Bk =−
Bℑ

k hℑ

k +Bℜ

k hℜ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

,

Ck =
Aℜ

k hℑ

k −Aℑ

k hℜ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

, Dk =
Aℜ

k hℜ

k +Aℑ

k hℑ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

,

(8.20)

the formulation of (8.18) is simplified to

α
A
k = Akxℜ

T +Bkxℑ

T , α
B
k = Ckxℜ

T +Dkxℑ

T . (8.21)

By defining

Rk =
[

Ak Bk

]
, Ik =

[
Ck Dk

]
, (8.22)
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and

x =
[ (

xℜ
T

)T (
xℑ

T

)T ]T
, ΛΛΛ =

[
α
A
1 , · · · ,αA

K ,α
B
1 , · · · ,αB

K

]T
, (8.23)

(8.18) can be further expressed in a compact form as

ΛΛΛ = Mx, (8.24)

where M is given by

M =
[

RT
1 · · · RT

K IT
1 · · · IT

K

]T
. (8.25)

With the above formulation, we can then construct the optimization

problem as
P8.3 : max

x
min

l
αl

s.t. ΛΛΛ = Mx

αl ≥ 0, ∀l ∈L

xE
i ∈

{
1√
2Nt

,− 1√
2Nt

}
, ∀i ∈I

(8.26)

where we have omitted ℜ and ℑ in the expression of the entries of ΛΛΛ, and

simply denote αl as its l-th entry. In P8.3, L = {1,2, · · · ,2K}, xE
i denotes

the i-th entry in x and I = {1,2, · · · ,2Nt}. The above optimization problem

P8.3 is interpreted as follows: we aim to maximize the minimum value of

αl by selecting each xE
i as either 1√

2Nt
or − 1√

2Nt
. With the above problem for-

mulation, the relaxation-normalization process on the transmit signals is no

longer needed. The above formulation motivates us to propose the follow-

ing low-complexity scheme, which consists of three stages: an initialization

stage, an allocation stage, and a refinement stage, each presented in detail

below.



8.4. Proposed Low-Complexity Symbol Scaling Approach 225

8.4.2 Initialisation Stage

In the initialisation stage, we directly select the value of xE
i for some i by

simple observation. To achieve this, we firstly rewrite (8.24) into

ΛΛΛ =
2Nt

∑
i=1

MixE
i , (8.27)

where we decompose M into

M =
[

M1 M2 · · · M2Nt

]
, (8.28)

with each Mi ∈ C2K×1. Based on (8.27), we have the following observation.

Observation: As long as all the entries of Mi share the same sign, then

it is optimal to set the sign of the corresponding xE
i equal to that of Mi, as in

this case the values of each entry in ΛΛΛ are guaranteed to increase.

Accordingly, the corresponding xE
i is obtained as

xE
i =

sgn(Mi)√
2Nt

, ∀i ∈U , (8.29)

where sgn(a) defines a vector sign function and is only valid when each en-

try in the vector a has the same sign. U denotes the set that consists of the

column indices of M that satisfy the sign-identity condition. We further in-

troduce a column vector t that represents a temporary value of ΛΛΛ, given by

t = ∑
i∈V

MixE
i , (8.30)

where the set V consists of the column indices of M whose corresponding

xE
i have been allocated a value. We note that when card (V ) = 2Nt , we have

t = ΛΛΛ.

In the case that no column in M satisfies the sign-identity condition, in

the initialisation stage we select only one column, i.e. card (U ) = 1, with the
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following criterion:

i = argmax
i∈H

‖Mi‖1, (8.31)

which selects the column that has the maximum effect on the value of ΛΛΛ.

Then, the value of the corresponding xE
i is set as

xE
i =

sgn(‖Mi‖1)√
2Nt

. (8.32)

In the initialisation stage, we have V = U or card (V ) = 1. We summarise

the algorithm for the initialisation stage in Algorithm 8.1.

Algorithm 8.1 Initialisation Stage
input : s, H
output : t, V
Decompose each sk = sℜ

k + sℑ

k based on modulation type;
Obtain M based on (8.12)-(8.25);
Find Mi that satisfies the sign-identity condition;
Obtain U ;
if U 6= /0 then

xE
i = sgn(Mi)√

2Nt
, ∀i ∈U ;

V = U ;
else

Obtain i based on (8.31), xE
i =

sgn(‖Mi‖1)√
2Nt

;
V = {i};

end if
Calculate t based on (8.30).

8.4.3 Allocation Stage

At this stage, we allocate the value of each xE
i for the residual i that belongs

to W , where we define the set W as

W = {i | i ∈H and i /∈ V } . (8.33)

W consists of those xE
i whose values have not been allocated in the initialisa-

tion stage. In the following allocation stage, we consider both a ‘Sum-Max’

and a ‘Max-Min’ criteria for the allocation process.
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Sum-Max: For the allocation scheme based on the ‘Sum-Max’ criterion,

instead of considering a max-min optimisation as in P8.3, we consider an al-

ternative sum-max optimisation, where the objective function is constructed

as

F (x) = sum(ΛΛΛ) , (8.34)

where sum(a) returns the sum of the entries in a column vector a. Based on

(8.24), the objective can be further transformed into

F (x) = mx =
2Nt

∑
i=1

[m]ix
E
i , (8.35)

where m ∈ C1×2Nt is the sum of the entries in each row of M. Each [m]i de-

notes the i-th entry in m, given by

[m]i =
2K

∑
l=1

[Mi]l. (8.36)

It is easy to observe that F (x) is maximised when the sign of each xE
i is the

same as that of [m]i, and therefore the optimal xE
i for the ‘Sum-Max’ criterion

is given by

xE
i =

sgn{[m]i}√
2Nt

, ∀i ∈W . (8.37)

The algorithm for the allocation stage based on ‘Sum-Max’ is summarised

in Algorithm 8.2.

Remark: While the above solution guarantees that the sum of αl is max-

imised, it does not specifically consider each value of αl , which may lead to

a performance loss. Indeed, it is possible that the value of one αl can be very

small or even negative. This is the reason why the refinement in Chapter

8.4.4 is further introduced.

Max-Min: For the ‘Max-Min’ allocation criterion, in each step we aim

to improve the minimum value in ΛΛΛ as much as possible. Denoting q as the

row index of the minimum entry in t obtained in the initialisation stage, we
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Algorithm 8.2 Allocation Stage - ‘Sum-Max’
input : V , M
output : xsum−max
Calculate W based on (8.33);
Calculate m and each m(i) based on (8.35), (8.36);
Allocate xE

i = sgn[m(i)]√
2Nt

, ∀i ∈W ;
Obtain x, denoted as xsum−max.

obtain

[t]q = min(t) , (8.38)

where min(t) returns the minimum value in t. Subsequently, we iteratively

select Mi with the largest absolute value in the q-th row, given by

i = argmax
i∈W

∣∣∣[Mi]q

∣∣∣ , (8.39)

and the corresponding xE
i is then obtained as

xE
i =

sgn [Mi (q)]√
2Nt

. (8.40)

Then, we update V and t, and based on the updated t we repeat the above

procedure until V =H . This means that each entry in x has been allocated,

and the algorithm for the allocation stage based on ‘Max-Min’ is summarised

in Algorithm 8.3.

Algorithm 8.3 Allocation Stage - ‘Max-Min’
input : V , M, t
output : xmax−min
while V 6= H do

Calculate W based on (8.33);
Obtain q that satisfies t(q) = min(t);
Find i = argmax

i∈W

∣∣∣[Mi]q

∣∣∣;
Allocate xE

i = sgn[Mi(q)]√
2Nt

;
Update V and t;

end while
Obtain x, denoted as xmax−min.
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8.4.4 Refinement Stage

In the refinement stage, we check whether the performance based on the ob-

tained signal vector in the allocation stage can be further improved based on

a greedy algorithm. To introduce the refinement process, we denote the ob-

tained expanded 1-bit signal vector after the allocation stage as x (obtained

based on either the ‘Sum-Max’ or the ‘Max-Min’ criterion). First, we sequen-

tially change the sign of one entry (for example xE
i ) in x at a time while fixing

the signs of other entries in x, and denote the modified signal vector as x(i).

We then compare the minimum value in ΛΛΛ obtained by the modified x(i) with

the minimum value in the original ΛΛΛ obtained by x(0). The sign of xE
i is se-

lected as the one that returns a larger minimum value in ΛΛΛ. The refinement

process is sequentially performed for each entry in x(0). The algorithm for

the refinement stage is then shown in Algorithm 8.4.

Algorithm 8.4 Refinement Stage
input : xsum−max (or xmax−min)
output : xT
Denote x(0) = xsum−max (or xmax−min);
for i = 1 : 2Nt do

Calculate ΛΛΛ(0) = Mx(0);

Obtain x(i) =
[
xE

1 , ...,x
E
i−1,−xE

i ,x
E
i+1, ...,x

E
2Nt

]T
;

Calculate ΛΛΛ(i) = Mx(i);
if min

(
ΛΛΛ(i)
)
> min

(
ΛΛΛ(0)

)
then

xE
i ←−xE

i ;
Update x(0);

end if
end for
Obtain xT based on the updated x(0).

The refinement stage is performed for the signal vectors obtained by

both the ‘Sum-Max’ and ‘Max-Min’ criteria independently. Accordingly, the

final output signal vector of the proposed symbol scaling approach that gen-

erates the best performance is selected between the signal vectors obtained

with these two criteria.
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8.4.5 Algorithm

Based on the above description, the algorithm for the three-stage symbol

scaling scheme is summarised in Algorithm 8.5, where the final output sig-

nal vector of the proposed symbol scaling method that generates the best

performance is selected within the signal vectors obtained by the ‘Sum-Max’

and ‘Max-Min’ criteria.

Algorithm 8.5 The Proposed Symbol Scaling Approach
input: s, H
output: xT
Initialisation Stage
Obtain V , M, and t with Algorithm 8.1;
Allocation Stage
1. ‘Sum-Max’:
Obtain xsum−max with Algorithm 8.2;
2. ‘Max-Min’:
Obtain xmax−min with Algorithm 8.3;
Refinement Stage
Update both xsum−max and xmax−min with Algorithm 8.4;
Calculate ΛΛΛs = Mxsum−max and ΛΛΛm = Mxmax−min;
if min(ΛΛΛs)> min(ΛΛΛm) then

x = xsum−max;
else

x = xmax−min;
end if
Decompose x =

[ (
xℜ

T

)T (
xℑ

T

)T ]T
;

Output xT = xℜ
T +xℑ

T · j.

8.5 Computational Complexity Analysis
In this section we study the computational costs of the proposed schemes

in terms of the required number of real multiplications and additions. As

a reference, we also study the complexity of the exhaustive search scheme

and the non-linear ‘Pokemon’ approach in [28]. For the optimization-based

approach, the complexity is evaluated based on the number of arithmetic

operations [188].
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8.5.1 Exhaustive Search
For massive MIMO transmission with 1-bit quantization, the output

signal on each antenna element has 4 potential values, i.e., each xn ∈{
1√
2
+ j · 1√

2
, 1√

2
− j · 1√

2
,− 1√

2
+ j · 1√

2
,− 1√

2
− j · 1√

2

}
. The exhaustive search

method first searches all the possible signal combinations and then selects

the best one, which means that there are a total number of 4Nt signal combi-

nations. For each signal combination, it takes 4KNt real multiplications and

2K (2Nt−1) real additions to compute ΛΛΛ based on (8.24), as M ∈ C2K×2Nt .

Therefore, the total number of required operations for the exhaustive search

scheme considering all the possible combinations is obtained as

CE = (4KNt +4KNt−2K) ·4Nt = (8KNt−2K) ·22Nt . (8.41)

It is easy to conclude that in the case of massive MIMO, the exhaustive search

scheme is inapplicable due to the overwhelmingly high computational cost.

8.5.2 Symbol Scaling Approach
In the following we calculate the computational cost for each stage of the

proposed symbol scaling approach. For both allocation criteria, the main

computational cost in the initialization and allocation stage comes from the

calculation of t ∈ C2K×1 based on (8.30). While the calculation of t is not

necessary for the ‘Sum-Max’ criterion, we note that t is required in the re-

finement stage. Each additional
(
mixE

i
)

term that is added to t requires 2K

multiplications and 2K additions, and t is updated 2Nt times after the allo-

cation stage, where we note M ∈ C2K×2Nt . The resulting computational cost

is

C1
L = 2Nt (2K +2K) = 8KNt . (8.42)

Moreover, for the ‘Max-Min’ allocation criterion, we need to iteratively allo-

cate the value for the residual xE
i , which introduces an additional computa-

tional cost for ‘Max-Min’ in the allocation stage. Since card (V ) is difficult to

obtain analytically in the initialization stage, we consider a worst-case com-
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plexity where card (V ) = 1, and in each iteration obtaining q and i in Algo-

rithm 8.3 requires 2K and 2Nt operations respectively, which leads to

C2
L = (2Nt−1)(2K +2Nt)≈ 4N2

t +4KNt (8.43)

in the case of massive MIMO. In the refinement stage, it is easy to observe

that the initial ΛΛΛ(0) = t. Then, in each iteration of Algorithm 8.4 we only

need to calculate the corresponding mi ·
(
−xE

i
)

and include it in ΛΛΛ(i). For

each xE
i this takes 2K multiplications and 2K additions, and therefore the

computational cost for the refinement stage is

C3
L = 2Nt (2K +2K) = 8KNt . (8.44)

Based on Algorithm 8.5, both xsum−max and xmax−min should be refined. Ac-

cordingly, we can obtain the total computational cost for the proposed sym-

bol scaling approach as

CL = C1
L +C2

L +2C3
L

= 8KNt +4N2
t +4KNt +2×8KNt

= 4N2
t +28KNt .

(8.45)

8.5.3 Pokemon

As a comparison, we also include the complexity of the non-linear ‘Poke-

mon’ scheme proposed in [28]. The ‘Pokemon’ approach is based on bicon-

vex relaxation, whose performance is dependent on the number of required

iterations. Based on [28], in each iteration we need to first calculate a vector

z ∈ C2Nt×1 based on z = Ux where U ∈ C2Nt×2Nt , and then update the signal

vector x ∈ C2Nt×1 with a projection function. The calculation of z requires a

total of 4N2
t multiplications and 2Nt (2Nt−1) additions, while the update of

x requires 4Nt multiplications. Assuming a maximum number of iterations
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nmax, this leads to

CP = nmax
(
4N2

t +4N2
t −2Nt +4Nt

)
= nmax

(
8N2

t +2Nt
)
.

(8.46)

Comparing the computational cost of ‘Pokemon’ with the proposed symbol

scaling method, we have

CL

CP
=

4N2
t +28KNt

nmax
(
8N2

t +2Nt
) = 2Nt +14K

nmax (4Nt +1)
. (8.47)

In the case of massive MIMO where K is finite while the antenna number

goes to infinity, (8.47) simplifies to approximately

CL

CP
=

2+ 14K
Nt

nmax

(
4+ 1

Nt

) ≈ 1
2nmax

. (8.48)

With the fact nmax ≥ 1, generally we obtain CL < CP.

8.5.4 Optimisation-based Non-linear Mapping P8.1

For the proposed non-linear mapping scheme, it is difficult to calculate the

required number of multiplications and additions. Therefore, we resort to

[188] and evaluate its complexity based on the arithmetic complexity.

For this non-convex optimization problem, the complexity is dominated

by solving the relaxed convex problem P8.2 via the interior-point method

[124]. Based on our reformulated P8.3 in Chapter 8.4.1, we first express the

equivalent real representation of P8.2 in a standard form as

P8.4 : max
v

cT v

s.t. qlv≤ 0,∀l ∈L

− eT
i+1v≤ 1√

2Nt
, − eT

i+1v≤ 1√
2Nt

, ∀i ∈I

v =
[
t,xE

1 ,x
E
2 , · · · ,xE

2Nt

]T
c = [1,0,0, · · · ,0]T

(8.49)
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In P8.4, ql =
[

1 −m̂l

]
, where m̂l denotes the l-th row of M. Based on [188],

the arithmetic complexity bound of the above optimization via the interior-

point method is given by

CN = (Mc +Nv)
1.5N2

v ·D(p,ε) , (8.50)

where ε is the accuracy of the solution, Nv denotes the dimension of the vari-

able v, and Mc is the total number of the constraints in the optimization.

Based on the construction of P8.4, we obtain

Mc = 4Nt +2K, Nv = 2Nt +1, (8.51)

which further leads to the expression of CN as

CN = (6Nt +2K +1)1.5(2Nt +1)2 ·D(p,ε) . (8.52)

D(p,ε) is the number of digits of accuracy for a solution with the accuracy

ε , and is given by

D(p,ε) = ln
(

Dim(p)+‖p‖1 + ε2

ε

)
, (8.53)

where the column vector p represents a permutation vector that contains the

parameters in both the objective function and the constraints [188]. For our

considered problem P8.4, p is given as

p =

(2K +4Nt) ,(2Nt +1) ,1,1, · · · ,1︸ ︷︷ ︸
2K

,(−m̂1) ,(−m̂2) , · · · ,(−m̂2K)︸ ︷︷ ︸
2K

,1, · · · ,1︸ ︷︷ ︸
2Nt

,−1, · · · ,−1︸ ︷︷ ︸
2Nt

,
1√
2Nt

, · · · , 1√
2Nt︸ ︷︷ ︸

4Nt


T

, (8.54)

which further leads to

‖p‖1 =

√
10Nt +4K +2

√
2Nt +‖M‖2

F +2. (8.84)
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In (8.53), Dim(p) denotes the dimension of the permutation vector p, and is

accordingly obtained as

Dim(p) = (Mc +1)(Nv +2)+2

= (4Nt +2K +1)(2Nt +2)+2.
(8.85)

Given the expressions for Dim(p) and ‖p‖1, we arrive at the final expression
of the complexity for P8.2, given by

CN = (6Nt +2K +1)1.5(2Nt +1)2 · ln

 (4Nt +2K +1)(2Nt +2)+
√

10Nt +4K +2
√

2Nt +‖M‖2
F +2+ ε2

ε

 . (8.86)

8.6 Numerical Results
In this section we present the numerical results of the proposed approaches

based on Monte Carlo simulations. In each plot, the transmit SNR is defined

as γ = P
/

σ2. Both QPSK and 8-PSK modulations are considered in the nu-

merical results. We compare our proposed methods with both the quantised

linear approaches and the non-linear mapping algorithms, and for clarity

the following abbreviations are used throughout this section:

• ‘ZF-FD’: Unquantised ZF precoding with infinite-precision DACs;

• ‘ZF 1-Bit’: Quantised ZF approach with 1-bit DACs in [16];

• ‘MMSE’: MMSE-based quantised linear scheme in [27];

• ‘Pokemon, nmax = K’: Non-linear Pokemon algorithm proposed in [28]

with K iterations;

• ‘Constructive’: Proposed non-linear mapping scheme P8.1;

• ‘sum-max’: Proposed symbol scaling approach based on the ‘sum-

max’ allocation scheme with Algorithm 8.1, 8.2 and 8.4;

• ‘max-min’: Proposed symbol scaling approach based on the ‘max-min’

allocation method with Algorithm Algorithm 8.1, 8.3 and 8.4;

• ‘Symbol Scaling’: Proposed symbol scaling method obtained via Algo-

rithm 8.5, where we select the best signal vector out of ‘sum-max’ and

‘max-min’ criteria.
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Figure 8.3: BER v.s. transmit SNR, Nt = 8, K = 2, nmax = 20, QPSK

In Fig. 8.3, we firstly consider a moderate-scale MIMO with a total num-

ber of Nt = 8 transmit antennas at the BS and K = 2 single-antenna users

in the system. For approaches with 1-bit quantisation, we observe that the

proposed symbol scaling method based on Algorithm 8.5 achieves the best

BER performance, while both the proposed non-linear mapping scheme and

‘Pokemon’ achieve an inferior performance. This is because both the non-

linear mapping method and the ‘Pokemon’ approach involve the relaxation-

normalisation process. For small-scale MIMO systems, based on Table 8.1

we can infer that η will be large in this case, which means that the deviation

of the solution obtained by the relaxation-normalisation process from the

solution of the original 1-bit optimisation problem is large, and the normali-

sation process may lead to further detection errors. For the proposed symbol

scaling approach, the performance is promising since we directly select the

quantised signal for each antenna element and therefore no relaxation or

quantisation is needed.

We proceed to consider a massive MIMO system with Nt = 128 trans-

mit antennas and K = 16 users in Fig. 8.4. In the case of massive MIMO, all

the schemes can achieve a lower BER thanks to the large number of anten-

nas at the BS, and generally non-linear schemes outperform linear schemes.
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Figure 8.4: BER v.s. transmit SNR, Nt = 128, K = 16, nmax = 20, QPSK
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Figure 8.5: BER v.s. transmit SNR, Nt = 128, K = 8, nmax = 20, 8-PSK

For approaches with 1-bit DACs, the proposed non-linear mapping method

outperforms the non-linear ‘Pokemon’ algorithm and achieves the best BER

performance. As for the proposed low-complexity symbol scaling approach,

by comparing Fig. 8.3 and Fig. 8.4, we can observe that the ‘Max-Min’ crite-

rion is most suitable for small-scale MIMO systems, while the ‘Sum-Max’

criterion is more favourable for massive MIMO systems.

In Fig. 8.5, we show the performance of different schemes for 8-PSK
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Figure 8.6: Analytical computational cost comparison, K = 8, nmax = 20, QPSK

modulation with Nt = 128 and K = 8. For 1-bit quantised precoding ap-

proaches, it is observed that the proposed optimisation-based non-linear

scheme achieves the best BER performance. For the symbol scaling ap-

proach, it is observed that in the case of 8-PSK, only a 1dB SNR loss is

observed compared to the non-linear iterative ‘Pokemon’ algorithm, and

therefore the proposed low-complexity symbol scaling approach is more

favourable in terms of the performance and complexity tradeoff.

In Fig. 8.6, we compare the computational complexity of each approach

in terms of the required number of real multiplications and additions. It

is observed that the computational cost of the proposed symbol-scaling

method based on sum-max requires the lowest computational cost, while the

number of operations required for the proposed symbol scaling approach is

much smaller than the required number of operations for ‘Pokemon’, even

for the case of nmax = 2 iterations. The complexity gains of the proposed

symbol scaling approach therefore favour its practical application.

To further compare the proposed schemes with ‘Pokemon’, in Fig. 8.7 we

present the BER performance with different number of iterations for Poke-

mon. The number of iterations does not have an effect on other methods and

therefore the BER for the other methods remains constant. It is observed



8.6. Numerical Results 239

that the performance of Pokemon improves as nmax increases. Nevertheless,

we note that the improvement becomes less significant with a larger nmax

and Pokemon achieves its best performance when nmax is around 25. An

important observation is when nmax = 2,3, where the computational cost of

Pokemon and our proposed scheme is similar, as shown by (??), and our

proposed symbol scaling approach is shown to achieve an improved perfor-

mance, which validates the superiority of the proposed approach.

To demonstrate the performance-complexity tradeoff directly, in Fig. 8.8

we depict the BER with respect to the required number of real operations

for a range of transmit antennas from Nt = 32 to Nt = 128, where the num-

ber of users is fixed as K = 8. We observe a significant gain for the ‘Sym-

bol Scaling’ approach compared to ‘Pokeman’ in terms of the performance-

complexity tradeoff, especially when the number of antennas is large. More-

over, while the performance of the proposed low-complexity method based

on ‘sum-max’ achieves an inferior performance to the ‘Symbol Scaling’ ap-

proach when Nt is large, it indeed achieves a better BER performance with a

lower computational cost compared to Pokemon with nmax = 2. Both of the

above observations indicate an advantage for the proposed scheme based on
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symbol scaling.

All the above results are based on the assumption of perfect CSI. In the

following, we numerically investigate the performance of the proposed ap-

proaches with imperfect CSI. The channel estimation techniques for mas-

sive MIMO with 1-bit quantisation is an ongoing topic of research [183, 186],

and an exact model for the imperfect CSI for this scenario is still not known.
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Therefore, in the following we employ a generic CSI model for TDD systems,

where the BS only has knowledge of a noisy version of H, given by

Ĥ = H+Q. (8.87)

In (8.87), Ĥ is the obtained CSI at the BS. Q denotes an error matrix with

Q ∼ CN(0,δ · I), where δ denotes the variance of the channel error. δ is

modelled as inversely proportional to the transmit SNR and is expressed

as δ = β
/

ρ , where β denotes the error coefficient [38]. The BER result with

imperfect CSI is depicted in Fig. 8.9, where a similar trend can be observed.

We can further observe that the proposed non-linear mapping method still

achieves the best performance among the schemes with 1-bit quantisation in

the case of imperfect CSI, while the proposed low-complexity symbol scal-

ing approach can achieve a comparable performance with a greatly reduced

computational cost.

8.7 Summary
In this chapter, we propose the downlink precoding approaches for the

massive MIMO downlink with 1-bit DACs based on the formulation of CI,

and we consider both a quantised linear scheme and a non-linear mapping

scheme. With the analyses of Lagrangian and KKT conditions, the linear

method is mathematically proven to be equivalent to the quantised ZF pre-

coding. For the proposed non-linear mapping approach, it is shown to be

non-convex and solved by a two-step relaxation-quantisation process. We

further propose a low-complexity symbol scaling approach, where the quan-

tised transmit signals are directly obtained. Numerical results reveal the su-

periority of the proposed symbol scaling approach in small-scale MIMO sys-

tems. In the case of massive MIMO, the performance advantage of the pro-

posed non-linear mapping method is validated, while the proposed symbol

scaling approach achieves a better performance-complexity tradeoff, which

favours its usefulness in practical systems.
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Chapter 9

Conclusions and Future Work

Downlink precoding and transmit beamforming techniques are essential to

achieve spatial multiplexing for multiple-antenna systems. Meanwhile, tak-

ing into consideration the realistic hardware components and their corre-

sponding effects on the designs of downlink transmission methods is also

of great necessity for the future 5G-and-beyond wireless communication

systems. Accordingly, this thesis has studied and proposed a number of

hardware-informed transmission strategies for realistic BS structures with

compact antenna arrays, reduced number of RF chains, and low-precision

DACs.

9.1 Conclusions
In this thesis, Chapter 2 presents an overview of multiple-antenna commu-

nication systems. Conventional downlink transmission approaches are de-

scribed, including closed-form precoding schemes and optimisation-based

transmit beamforming methods. After identifying the main drawbacks of

the above techniques and highlighting areas that need further investigations,

the main contributions of this thesis are presented in Chapter 3 - Chapter 8.

To be more specific,

• Chapter 3 has proposed two novel VP precoding techniques for the

multiple-modulation scenarios. It is shown that the proposed tech-

niques achieve significant performance gains over the existing BDVP
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and UGVP designed for multiple-modulation cases. The main obser-

vations in this chapter can be summarised as:

C3.1 The significant performance gain of the conventional VP tech-

nique over linear precoding methods is extended to multiple-

modulation scenarios by the proposed JVP precoding. With

a simple but effective constellation scaling approach, the JVP

method achieves a similar performance to single-modulation VP

scheme without incurring significant additional computational

costs.

C3.2 Thanks to the CI formulation, the introduced JCVP precoding can

achieve a similar performance to the JVP precoding in multiple-

modulation cases, while requires a reduced computational cost,

especially for the users employing PSK modulations. The com-

plexity gains make the proposed JCVP precoding more attractive

for multiple-modulation scenarios, compared to the JVP precod-

ing.

• Both Chapter 4 and Chapter 5 have studied the exploitation of MC

effect by the use of tunable antenna loads in conventional compact

multiple-antenna systems, where Chapter 4 focuses on P2P MIMO sys-

tems by the exploiting the CI formulation, while Chapter 5 extends

to multi-user scenarios by the proposition of a joint AD beamform-

ing method. It is shown that the performance of compact MIMO sys-

tems can be further improved with the employment of tunable antenna

loads. The central remarks within these two chapters are:

C4.1 For a P2P MIMO system considered in Chapter 4, by employing

a ZF equalisation at the receiver, the MC matrix can be regarded

as an interference matrix at the transmitter. It is further proven

that full elimination of the coupling effect is not achievable by the

proposed approach.
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C4.2 The CI formulation is particularly useful in optimising the tun-

able antenna loads, which not only returns a feasible solution with

practical antenna values, thanks to the constructive region that ex-

pands the feasible region of the tunable loads, but also achieves a

significant SNR gain in the BER performance.

C5.1 For a multi-user case in Chapter 5, both the proposed joint and

decoupled approach return an improved BER performance, even

compared to the ideal case assuming no coupling effect. Specifi-

cally, the decoupled approach further enables the exploitation of

MC with closed-form precoders. The above observations reveal

the benefits of exploiting the coupling effect instead of compen-

sating for it in compact multiple-antenna systems.

C5.2 The proposed sequential search algorithm is promising when re-

alistic quantised load values are considered, which achieves a

close-to-optimal performance while only requires a very low com-

putational cost. It is particularly effective when the number of

transmit antennas is large or the quantisation level is high, where

the exhaustive search method is too complicated for practical im-

plementation.

• In Chapter 6, by taking realistic quantised tunable loads into consider-

ation, we design the quantisation-robust precoding techniques specif-

ically for the compact parasitic-antenna arrays. It is proven that the

optimality is achieved by optimising the feeding voltages only, where

convex optimisation approaches are employed to obtain the optimal

feeding voltage in the presence of quantised antenna loads. The main

observations obtained from the results of this chapter are as follows:

C6.1 The introduction of quantisation in the tunable load values has

a significant impact on the performance of compact parasitic an-

tenna arrays. An error floor is observed in medium-to-high SNR
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regimes. Specifically, even a small quantisation interval can lead

to a significant performance loss.

C6.2 The proposed quantisation-robust method can well alleviate the

performance degradation by quantisation, especially for multi-

fed parasitic arrays. With a larger quantisation interval, the per-

formance gain of the proposed technique over conventional cases

is more significant. Particularly, the derived closed-form expres-

sion for single-fed parasitic arrays motivates the efficient imple-

mentation of the proposed technique.

• Chapter 7 first focuses on the hybrid precoding in large-scale mmWave

communication systems, and propose three distinct hybrid precod-

ing designs based on the virtual path selection. This chapter further

extends the study on the hybrid precoding to energy-efficient MIMO

SWIPT systems, where both a low-complexity and an iterative meth-

ods are proposed. The central conclusions drawn from this chapter

are:

C7.1 Among all of the three proposed methods for hybrid precoding in

mmWave communications, the joint design achieves the best per-

formance with the highest computational cost. Compared to the

joint design, only a slight performance loss is observed for the sub-

optimal method, which requires the least complexity and may be

the most promising approach in practical mmWave systems.

C7.2 The advantage of employing hybrid structures extends to the

small-scale MIMO SWIPT systems in terms of power efficiency.

Both of the proposed hybrid designs achieve an improved per-

formance over the FD case, while further gains are observed for

the proposed iterative algorithm over the low-complexity method

based on SVD. In particular, the required total power consump-

tion at the BS reveals that the partially-connected hybrid struc-
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tures are more advantageous over the fully-connected hybrid

structures.

• In Chapter 8, we study the downlink precoding for large-scale

multiple-antenna systems with low-precision DACs based on the CI

formulation. The quantised CI-based linear precoding method is

mathematically shown to be equivalent to the quantised ZF method

for massive MIMO, while the proposed non-linear method can signif-

icantly improve the performance. A low-complexity symbol-scaling

method that directly selects the quantised transmit signals is further

proposed. The results observed in this chapter lead to the following

remarks:

C8.1 Both the quantised linear and non-linear approaches include a

relaxation-normalisation process, while the symbol-scaling ap-

proach directly designs the quantised transmit signals. There-

fore in small-scale MIMO systems, the proposed method based

on symbol scaling achieves the best BER performance, as it is very

likely that the normalisation process leads to a detection error

when the number of transmit antennas is small.

C8.2 While the performance is inferior to the non-linear method in the

case of massive MIMO, the proposed symbol scaling approach

achieves an improved performance and complexity tradeoff,

which makes it more appealing in practical large-scale multiple-

antenna systems with 1-bit DACs.

9.2 Future Work
The proposed techniques in this thesis have motivated further investiga-

tions in some research directions, especially in the area of future large-scale

multiple-antenna systems. In particular, the following research lines are of

interest to the author for the future work:
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• Downlink transmission design for BSs with a reduced number of RF

chains and 1-bit DACs: Compared to conventional FD systems, the re-

sults and observations in both Chapter 7 and Chapter 8 have demon-

strated the potential gains in employing hardware-efficient BSs. Cur-

rent research has either focused on the hybrid structures with high-

precision DACs or considered low-precision DACs with full RF chains,

both of which can achieve a higher energy efficiency performance than

the FD systems. As a further step, it is therefore of particular interest

to propose novel transmission methods where the joint use of limited

number of RF chains and low-resolution DACs is considered. To be

more specific, while the downlink precoding designs for 1-bit DACs

do not need to consider the power scaling factor, this factor is needed

when the hybrid structure is further included, which requires further

investigations and may motivate new transmission strategies.

• Energy efficiency maximisation for hybrid BS structures with low-

precision DACs: Achieving energy-efficient transmissions is one im-

portant task for the future wireless communication systems, due to the

increasing power consumption in the wireless BSs and devices. While

both the use of small number of RF chains and low-resolution DACs

can increase the energy efficiency, maximising the energy efficiency is

not the primal target. Therefore, it is appealing to directly consider the

maximisation on the energy efficiency. To achieve this, in the first step

an analytical result on the system capacity needs to be derived in the

presence of limited RF chains and finite-precision DACs, which may

not be easy and requires deep investigations. An optimisation on the

required number of RF chains and DAC precision to maximise the en-

ergy efficiency can be further considered, and the tradeoff between the

number of RF chains and the quantisation bits in the DACs is also an

interesting topic.
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• Hybrid beamforming designs for SWIPT systems with power-

splitting receivers: In Chapter 7 of this thesis, we have considered

the application of hybrid precoding in MIMO SWIPT systems. Nev-

ertheless, a simple SWIPT architecture with separate ID and the EH

receivers is considered. As a future work, it is particularly interesting

to study the combination of hybrid precoding with power-splitting

receivers, where each user can simultaneously decode data symbols

and harvest energy. More specifically, it will be interesting to consider

a joint optimisation on the hybrid precoders and the power splitting

ratio to achieve a specific target, for example, power minimisation,

SINR balancing, harvested energy maximisation or energy efficiency

maximisation. This study may further motivate the use of hybrid

structures in small-scale multiple-antenna systems due to their more

favourable power, hardware costs, and performance tradeoff.

To finally summarise, this thesis has presented several hardware-

informed downlink transmission approaches, each designed for a specific

transmitter structure. The author hopes that the results and observations

obtained within this thesis can help motivate novel designs, which respect

the realistic hardware components in the multiple-antenna systems for the

future 5G-and-beyond wireless communication systems.
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Appendices

Appendix A: Derivation of the Mutual Coupling

Matrix with Tunable Loads

(a) Coupled Array (b) Equivalent Uncoupled Array

Figure A.1: Circuit representation of a coupled array and the uncoupled transfor-
mation

The derivation of the mutual coupling matrix with tunable loads is

based on [64]. An array consisting of N coupled antennas is considered

where we assume each antenna element is connected to a RF chain and a

voltage source. The representation of the array and its equivalent uncou-

pled transformation is shown in Fig. A.1. Accordingly, based on the Ohm’s
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law we obtain

v = vL +va = diag(zL) i+ZMi = [diag(zL)+ZM] i, (A.1)

where v = [v1,v2, · · · ,vN ] denotes the source voltage vector that is considered

constant, vL = [vL1,vL2, · · · ,vLN ] is the load voltage vector, va = [va1,va2, · · · ,vaN ]

is the voltage vector on the antenna load, zL = [zL1 ,zL2, · · · ,zLN ] denotes the

load impedance vector, and ZM is the mutual impedance matrix, given by

ZM =


z1,1 z1,2 · · · z1,N

z2,1 z2,2
. . . ...

... . . . . . . zN−1,N

zN,1 · · · zN,N−1 zN,N

 . (A.2)

Without loss of generality, following [64, 187] we further assume that the

self-impedance of the antenna is independent of the presence of other an-

tenna element and all antennas are identical, which leads to

z1,1 = z2,2 = · · ·= zN,N = zA, (A.3)

and a fixed mutual impedance value for two arbitrary antenna elements with

an identical antenna spacing. Accordingly, the mutual impedance matrix is

further simplified into

ZM =


zA zM1 · · · zMN−1

zM1 zA
. . . ...

... . . . . . . zM1

zMN−1 · · · zM1 zA

 . (A.4)

Based on , (A.1) can be further transformed into

i = [diag(zL)+ZM]v−1. (A.5)
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In the equivalent transformation, v̂ is denoted as the equivalent source volt-

age vector to obtain the same radiation fields as the coupled model. The

mutual coupling matrix can be defined as

v̂ = Zv. (A.6)

Based on the uncoupled transformation, the equivalent voltage for each an-

tenna impedance is obtained in matrix form as

v̂a = zA · i (A.7)

with the same currents as in the coupled model. By substituting (A.5) into

(A.7), (A.7) is further transformed into

1
zA
· v̂a = [diag(zL)+ZM]−1v. (A.8)

With

v̂a = diag
([

zA

zL1 + zA
, · · · , zA

zLN + zA

])
v̂, (A.9)

we further obtain

v̂ = [zA · I+diag(zL)] [ZM +diag(zL)]
−1︸ ︷︷ ︸

Z

v (A.10)

which defines the mutual coupling matrix Z.

Appendix B: Calculation of the Antenna Load zA

and Mutual Impedance Matrix ZM

Based on [63], the antenna impedance zA and the mutual impedance zMk can

be calculated with EMF methods based on the antenna spacing d. For the

antenna impedance, the real part and imaginary part can be calculated re-
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spectively as

zA = RzA + j ·XzA, (B.1)

where RzA is the resistance and XzA is the reactance. The calculation of RzA

and XzA is given by

RzA =
η

2πsin2 (KL
2

) {γ0 + ln(KL)−Ci (KL)+
sin(KL)

2
· [Si (2KL)−2Si (KL)]

+
cos(KL)

2

[
γ0 + ln

(
KL
2

)
+Ci (2KL)−2Ci (KL)

]}
, (B.2.1)

XzA =
η

4πsin2 (KL
2

) {2Si (KL)+ cos(KL) · [2Si (KL)−Si (KL)]

−sin(KL) ·
[

2Ci (KL)−Ci (2KL)−Ci

(
2Ka2

L

)]}
. (B.2.2)

where η = 120π is the intrinsic impedance, Ci and Si denote the cosine inte-

gral function and sine integral function, respectively. γ0 is the Euler constant,

K = 2π

λ0
, and L = l ·λ0, where λ0 is the carrier wavelength and l is the length

of the dipole antennas normalised by the carrier wavelength. a is the radius

of the wire and a typical value a = 0.001m is employed throughout this the-

sis. For typical half-wavelength dipole antennas, l = 0.5 and the resulting

zA = (73+ j ·42.5)Ω.

For a uniform linear half-wavelength dipole antenna array with side-by-

side configuration, as employed in the simulations of this thesis, the mutual

impedance can be calculated as

zMk = Rmk + j ·Xmk , (B.3)

where the real part Rmk and imaginary part Xmk can be calculated respectively

as

Rmk =
η

4π
{2Ci [u0 (k)]−Ci [u1 (k)]−Ci [u2 (k)]} , (B.4.1)

Xmk =−
η

4π
{2Si [u0 (k)]−Si [u1 (k)]−Si [u2 (k)]} , (B.4.2)
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where u0, u1 and u2 can be calculated as

u0 (k) = 2π · kd, (B.5.1)

u1 (k) = 2π · k
(√

d2 + l2 + l
)
, (B.5.2)

u2 (k) = 2π · k
(√

d2 + l2− l
)
, (B.5.3)

where d is the normalised antenna spacing.

Appendix C: BER over Correlated Rayleigh Chan-

nels

Under correlated Rayleigh channels, based on [30, 112, 113] the distribution

of the SNR γk on the k-th stream for ZF precoding is expressed as

f (γk) =
κ2

k e−
γkκ2

k
γ0

γ0 (K−Nt)!

(
γkκ2

k
γ0

)K−Nt

, (C.1)

where γ0 is the transmit signal-to-noise ratio per bit (EbN0). When K = Nt , as

assumed in the thesis, (C.1) can be simplified into

fK=Nt (γk) =
κ2

k
γ0

e−
κ2

k
γ0
·γk . (C.2)

Note that the conditional BER of the k-th stream can be expressed as [30]

P(γk) = Q
(√

2γk

)
, (C.3)

where Q(x) = 1√
2π

∫
∞

x e−
t2
2 dt is the Q-function. Then, the average BER for

stream k can be obtained by averaging P(γk) over its probability density func-
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tion, given by

Pk =
∫

∞

0
P(γk) fK=Nt (γk)dγk

=
∫

∞

0

1√
2π

∫
∞

√
2γk

e−
t2
2 dt

κ2
k

γ0
e−

κ2
k

γ0 dγk

=
κ2

k√
2πγ0

∫
∞

0
e−

t2
2 dt

∫ t2
2

0
e−

κ2
k

γ0 dγk

=
1√
2π

∫
∞

0
e−

t2
2 dt− 1√

2π

∫
∞

0
e−

γ0+κ2
k

γo · t22 dt

(C.4)

As we have
1√
2π

∫
∞

0
e−

t2
2 dt =

1
2

1√
2π

∫
∞

0
e−

γ0+κ2
k

γo · t22 dt =
1
2

√
γ0

κ2
k + γ0

(C.5)

the average BER for stream k is obtained as

Pk =
1
2

[
1−
√

γ0

κ2
k + γ0

]
. (C.6)

Finally, the average BER over all MIMO streams can be calculated as

Pb =
1

2K

K

∑
k=1

[
1−
√

γ0

κ2
k + γ0

]
. (C.7)

Appendix D: Coordinate Transformation

We employ the 8-PSK modulation in Fig. 8.2 as an example to demonstrate

the coordinate transformation, where we focus on the constellation point ‘A’

in Fig. 8.2. Accordingly, in the conventional real-imaginary complex plane,

for node ‘B’ in Fig. 8.2, we have

~OB = hkxT = Br ·1+Bi · j, (D.1)
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where 1 and j are the bases, and we denote (Br,Bi) as the corresponding

coordinate. Subsequently, Br and Bi are obtained as

Br = ℜ(hkxT ) = ℜ(hk)xℜ
T −ℑ(hk)xℑ

T ,

Bi = ℑ(hkxT ) = ℑ(hk)xℜ
T +ℜ(hk)xℑ

T .
(D.2)

In the plane expanded by the two detection thresholds that correspond to

the constellation point ‘A’, ~OB is decomposed into

~OB = hkxT = α
A
k sAk +α

B
k sBk . (D.3)

Based on the fact that αA
k and αB

k are real numbers, (D.3) is further trans-

formed into

hkxT = α
A
k

(
Aℜ

k +Aℑ

k · j
)
+α

B
k

(
Bℜ

k +Bℑ

k · j
)

=
(

Aℜ

k α
A
k +Bℜ

k α
B
k

)
+
(

Aℑ

k α
A
k +Bℑ

k α
B
k

)
· j.

(D.4)

By substituting (D.2) into (D.4), we obtain

Br = ℜ(hk)xℜ
T −ℑ(hk)xℑ

T = Aℜ

k α
A
k +Bℜ

k α
B
k ,

Bi = ℑ(hk)xℜ
T +ℜ(hk)xℑ

T = Aℑ

k α
A
k +Bℑ

k α
B
k ,

(D.5)

which leads to the expression of αℜ

k and α
ℑ

k , given by

α
A
k =

Bℑ

k Br−Bℜ

k Bi

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

=
Bℑ

k

[
hℜ

k xℜ
T −hℑ

k xℑ

T

]
−Bℜ

k

[
hℑ

k xℜ
T +hℜ

k xℑ

T

]
Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

=
Bℑ

k hℜ

k −Bℜ

k hℑ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℜ
T −

Bℑ

k hℑ

k +Bℜ

k hℜ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℑ

T ,

(D.6)
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and

α
B
k =

Aℜ

k Bi−Aℑ

k Br

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

=
Aℜ

k

[
hℑ

k xℜ
T +hℜ

k xℑ

T

]
−Aℑ

k

[
hℜ

k xℜ
T −hℑ

k xℑ

T

]
Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

=
Aℜ

k hℑ

k −Aℑ

k hℜ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℜ
T +

Aℜ

k hℜ

k +Aℑ

k hℑ

k

Aℜ

k Bℑ

k −Aℑ

k Bℜ

k

xℑ

T .

(D.7)

The extension to other constellation points of 8-PSK and other PSK modula-

tions can be similarly obtained and is omitted for brevity.
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