67,187 research outputs found
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
MIF contributes to Trypanosoma brucei associated immunopathogenicity development
African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity
Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor β in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension.
Pulmonary arterial hypertension (PAH) can be idiopathic or secondary to autoimmune diseases, and it represents one of the most threatening complications of systemic sclerosis (SSc). Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with proinflammatory functions that appears to be involved in the pathogenesis of hypoxia-induced PH. In SSc patients, high serum levels of MIF have been associated with the development of ulcers and PAH. Stem cell growth factor β (SCGF β) is a human growth factor that, together with MIF, is involved in the pathogenesis of chronic spinal cord injury. The aim of our study was to measure serum levels of MIF in patients with idiopathic and SSc-associated PAH. We enrolled 13 patients with idiopathic PAH and 15 with SSc-associated PAH. We also selected 14 SSc patients without PAH and 12 normal healthy controls, matched for sex and age. PAH was confirmed by right hearth catheterism (mPAP>25 mmHg). MIF and SCGF β levels were measured by ELISA. We found significantly higher circulating levels of MIF and of SCGF β in patients with idiopathic PAH (P=0.03 and P=0.004) and with PAH secondary to SSc (P=0.018 and P=0.023) compared to SSc patients without PAH. Higher levels of MIF were found in those patients with an higher New York Heart Association (NYHA) class (P=0.03). We can hypothesize that MIF and SCGF β are able to play a role in PAH, both idiopathic or secondary, and in the future they may be evaluated as useful biomarkers and prognostic factors for this serious vascular disease
Aging-associated Alteration in the Cardiac MIF-AMPK Cascade in Response to Ischemic Stress
An important role for a macrophage migration inhibitory factor (MIF)-AMP-activated protein kinase (AMPK) signaling pathway in ameliorating myocardial damage following ischemia/reperfusion has been described. An aging-associated reduction in AMPK activity may be associated with a decline in the ability of cardiac cells to activate the MIF-AMPK cascade, thereby resulting in reduced tolerance to ischemic insults. To test this hypothesis, _in vivo_ regional ischemia was induced by occlusion of the left anterior descending (LAD) coronary artery in young (4-6 months) and aged (24-26 months) mice. The ischemic AMPK activation response was impaired in aged hearts compared to young ones (p<0.01). Notably, cardiac MIF expression in aged hearts was lower than in young hearts (p<0.01). Dual staining data clearly demonstrated larger infarct size in aged hearts following ischemia and reperfusion compared to young hearts (p<0.05). Ischemia-induced AMPK activation in MIF knock out (MIF KO) hearts was blunted, leading to greater contractile dysfunction of MIF KO cardiomyocytes during hypoxia than that of wild type (WT) cardiomyocytes. Finally exogenous recombinant MIF significantly reversed the contractile dysfunction of aged cardiomyocytes in response to hypoxia. We conclude that an aging-associated reduction in ischemic AMPK activation contributes to ischemic intolerance in aged hearts
Functional diversity of motoneurons in the oculomotor system
Extraocular muscles contain two types of muscle fibers according to their innervation pattern: singly innervated muscle fibers (SIFs), similar to most skeletal muscle fibers, and multiply innervated muscle fibers (MIFs). Morphological studies have revealed that SIF and MIF motoneurons are segregated anatomically and receive different proportions of certain afferents, suggesting that while SIF motoneurons would participate in the whole repertoire of eye movements, MIF motoneurons would contribute only to slow eye movements and fixations. We have tested that proposal by performing single-unit recordings, in alert behaving cats, of electrophysiologically identified MIF and SIF motoneurons in the abducens nucleus. Our results show that both types of motoneuron discharge in relation to eye position and velocity, displaying a tonic–phasic firing pattern for different types of eye movement (saccades, vestibulo-ocular reflex, vergence) and gaze-holding. However, MIF motoneurons presented an overall reduced firing rate compared with SIF motoneurons, and had significantly lower recruitment threshold and also lower eye position and velocity sensitivities. Accordingly, MIF motoneurons could control mainly gaze in the off-direction, when less force is needed, whereas SIF motoneurons would contribute to increase muscle tension progressively toward the on-direction as more force is required. Anatomically, MIF and SIF motoneurons distributed intermingled within the abducens nucleus, with MIF motoneurons being smaller and having a lesser somatic synaptic coverage. Our data demonstrate the functional participation of both MIF and SIF motoneurons in fixations and slow and phasic eye movements, although their discharge properties indicate a functional segregation.Ministerio de Ciencia, Innovación y Universidades – Fondo Europeo de Desarrollo Regional (BFU2015-64515-P)Junta de Andalucía (BIO-297
Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy.
Anti-angiogenic therapies for cancer such as VEGF neutralizing antibody bevacizumab have limited durability. While mechanisms of resistance remain undefined, it is likely that acquired resistance to anti-angiogenic therapy will involve alterations of the tumor microenvironment. We confirmed increased tumor-associated macrophages in bevacizumab-resistant glioblastoma patient specimens and two novel glioblastoma xenograft models of bevacizumab resistance. Microarray analysis suggested downregulated macrophage migration inhibitory factor (MIF) to be the most pertinent mediator of increased macrophages. Bevacizumab-resistant patient glioblastomas and both novel xenograft models of resistance had less MIF than bevacizumab-naive tumors, and harbored more M2/protumoral macrophages that specifically localized to the tumor edge. Xenografts expressing MIF-shRNA grew more rapidly with greater angiogenesis and had macrophages localizing to the tumor edge which were more prevalent and proliferative, and displayed M2 polarization, whereas bevacizumab-resistant xenografts transduced to upregulate MIF exhibited the opposite changes. Bone marrow-derived macrophage were polarized to an M2 phenotype in the presence of condition-media derived from bevacizumab-resistant xenograft-derived cells, while recombinant MIF drove M1 polarization. Media from macrophages exposed to bevacizumab-resistant tumor cell conditioned media increased glioma cell proliferation compared with media from macrophages exposed to bevacizumab-responsive tumor cell media, suggesting that macrophage polarization in bevacizumab-resistant xenografts is the source of their aggressive biology and results from a secreted factor. Two mechanisms of bevacizumab-induced MIF reduction were identified: (1) bevacizumab bound MIF and blocked MIF-induced M1 polarization of macrophages; and (2) VEGF increased glioma MIF production in a VEGFR2-dependent manner, suggesting that bevacizumab-induced VEGF depletion would downregulate MIF. Site-directed biopsies revealed enriched MIF and VEGF at the enhancing edge in bevacizumab-naive patients. This MIF enrichment was lost in bevacizumab-resistant glioblastomas, driving a tumor edge M1-to-M2 transition. Thus, bevacizumab resistance is driven by reduced MIF at the tumor edge causing proliferative expansion of M2 macrophages, which in turn promotes tumor growth
Helicobacter pylori infection is associated with increased expression of macrophage migratory inhibitory factor - by epithelial cells, T cells, and macrophages - in gastric mucosa
The macrophage migratory inhibitory factor (MIF) plays a pivotal role in inflammatory and immune diseases; however, its role in gastrointestinal diseases has not been clarified. This study intended to determine the expression of MIF, by gastric epithelial cells, T cells, and macrophages, in Helicobacter pylori-induced gastritis. Sixty-four patients (30 males, 34 females; mean age, 47 years) referred for upper endoscopy were recruited. Biopsy specimens from the gastric antrum and corpus were obtained for (1) detection of H. pylori and histological examination, (2) single and double immunostaining to test for expression of MIF protein in epithelial cells, T cells, and macrophages, and (2) in situ hybridization for expression of MIF mRNA within the lamina propria. In mucosal specimens from each of the 2 sites, both the percentage of MIF + epithelial cells and the numbers of MIF mRNA+ inflammatory cells, MIF+ T cells, and MIF+ macrophages were significantly higher in H. pylori-positive patients than in H. pylori-negative patients. Overall, the percentage of MIF+ epithelial cells and the numbers of MIF mRNA+ cells, MIF+ T cells, and MIF+ macrophages were higher in the antrum than in the corpus. The percentage of MIF+ epithelial cells and the numbers of MIF mRNA+ cells, MIF+ T cells, and MIF+ macrophages increased in chronic gastritis, but, in the absence of H. pylori infection, this increase disappeared for all except MIF+ T cells. Therefore, H. pylori infection is associated with increased expression of the MIF protein and MIF mRNA in gastric epithelial and inflammatory cells; along with other cytokines, MIF may play a significant role in gastric inflammation related to H. pylori infection.published_or_final_versio
Evidence for O-atom exchange in the O(^1D) + N_2O reaction as the source of mass-independent isotopic fractionation in atmospheric N_2O
Recent experiments have shown that in the oxygen isotopic exchange reaction for O(^1D) + CO_2 the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O(^1D) + N_2O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N_2O. We apply quantum chemical methods to compute the energetics of the potential energy surfaces on which the O(^1D) + N_2O reaction occurs. Preliminary modeling results indicate that oxygen isotopic exchange via O(^1D) + N_2O can account for the MIF oxygen anomaly if the oxygen atom isotopic exchange rate is 30–50% that of the total rate for the reactive channels
Применение нейронных сетей для радиационного контроля качества сварных соединений
Abstract
The cytokine macrophage migration inhibitory factor (MIF) exhibits pro- and anti-inflammatory activities and regulates cell proliferation and survival. We investigated the effects of MIF on apoptosis. As MIF exhibits oxidoreductase activity and participates in regulating oxidative cell stress, we studied whether MIF could affect oxidative stress-induced apoptosis. We demonstrated that MIF exhibits antiapoptotic activity in various settings. MIF suppressed camptothecin-induced apoptosis in HeLa and Kym cells and HL-60 promyeloblasts. Both exogenous MIF and endogenous MIF, induced following overexpression through tetracycline (tet) gene induction, led to significant suppression of apoptosis. Apoptosis reduction by MIF was also observed in T cells. A role for MIF in redox stress-induced apoptosis was addressed by comparing the effects of rMIF with those of the oxidoreductase mutant C60SMIF. Endogenous overexpression of C60SMIF was similar to that of MIF, but C60SMIF did not suppress apoptosis. Exogenous rC60SMIF inhibited apoptosis. A role for MIF in oxidative stress-induced apoptosis was directly studied in HL-60 leukocytes and tet-regulated HeLa cells following thiol starvation or diamide treatment. MIF protected these cells from redox stress-induced apoptosis and enhanced cellular glutathione levels. As overexpressed C60SMIF did not protect tet-regulated HeLa cells from thiol starvation-induced apoptosis, it seems that the redox motif of MIF is important for this function. Finally, overexpression of MIF inhibited phosphorylation of endogenous c-Jun induced by thiol starvation, indicating that MIF-based suppression of apoptosis is mediated through modulation of c-Jun N-terminal kinase activity. Our findings show that MIF has potent antiapoptotic activities and suggest that MIF is a modulator of pro-oxidative stress-induced apoptosis.</jats:p
Lessons from Innovation: Skills Standards and Certification
Working with public, private, and nonprofit sector partners, MIF has invested in the development of skills standards and certification systems with fifteen projects in Latin America and the Caribbean. The goal: to increase the competitiveness and productivity of workers and industries throughout the region.Public Sector, Private Sector, Economic Development & Growth, Financial Sector, public; private; nonprofit; sector partners; MIF development of skills standards; certification systems; Latin America; the Caribbean; competitiveness; productivity; workers; industries
- …
