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ABSTRACT 

An important role for a macrophage migration inhibitory factor (MIF)-AMP-activated 

protein kinase (AMPK) signaling pathway in ameliorating myocardial damage following 

ischemia/reperfusion has been described. An aging-associated reduction in AMPK activity may 

be associated with a decline in the ability of cardiac cells to activate the MIF-AMPK cascade, 

thereby resulting in reduced tolerance to ischemic insults. To test this hypothesis, in vivo regional 

ischemia was induced by occlusion of the left anterior descending (LAD) coronary artery in 

young (4-6 months) and aged (24-26 months) mice. The ischemic AMPK activation response 

was impaired in aged hearts compared to young ones (p<0.01). Notably, cardiac MIF expression 

in aged hearts was lower than in young hearts (p<0.01). Dual staining data clearly demonstrated 

larger infarct size in aged hearts following ischemia and reperfusion compared to young hearts 

(p<0.05). Ischemia-induced AMPK activation in MIF knock out (MIF KO) hearts was blunted, 

leading to greater contractile dysfunction of MIF KO cardiomyocytes during hypoxia than that of 

wild type (WT) cardiomyocytes. Finally exogenous recombinant MIF significantly reversed the 

contractile dysfunction of aged cardiomyocytes in response to hypoxia. We conclude that an 

aging-associated reduction in ischemic AMPK activation contributes to ischemic intolerance in 

aged hearts.  

 

 

Key Words:  aging, AMP-activated protein kinase (AMPK), macrophage migration inhibitory 

factor (MIF), cardioprotection, myocardial infarct, ischemia 



3 
 

INTRODUCTION 

The most common cause of damage to the myocardium is ischemic injury caused by complete or 

partial occlusion of the coronary arteries 1. Numerous investigators have observed a decreased 

ability of the aged myocardium to tolerate an ischemic or hypoxic stress in both animal models 

and in human subjects 2-4. In addition, aging has been shown to decrease myocardial tolerance to 

specific components of ischemic injury, including oxidative stress 5. It is widely accepted that 

aging is accompanied by a general decline in stress resistance 6. Multiple clinical trials have 

demonstrated that the mortality after myocardial infarction, coronary angioplasty, and cardiac 

surgery in patients 70 years or older is significantly higher than that of younger age groups 7,8. 

Although several clinical factors contribute to the poor prognosis of elderly patients with 

ischemic heart disease 9,10, there is evidence in experimental animal 11-13 and humans 4,14 to 

suggest that this may be related to a decline in intrinsic myocardial resistance to injury. However, 

the mechanisms responsible for ischemic intolerance are incompletely understood and the 

activities of signaling pathways important in regulating cellular responses to 

ischemia/reperfusion remain largely unknown.  

In the heart, the AMP-activated protein kinase (AMPK) signaling pathway is activated by 

a variety of cellular stresses such as glucose deprivation, ischemia, hypoxia, oxidative stress, and 

hyperosmotic stress 15. AMPK affects energy intake, utilization, and storage by regulation of 

food intake, substrate flux and metabolism 16. AMPK regulates many pathways in the heart that 

control glucose and lipid uptake, storage, and utilization 15,16, and it modulates the activity of 

metabolic enzymes, ion channels, gene expression.  AMPK also functions by interacting with 

other intracellular signaling pathways 15. The activity of AMPK or its yeast homologue, Snf1, 

may be altered with age 17,18. Moreover, genetic mutations in the AMPK genes cause metabolic 
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dysfunction of cardiac and skeletal muscles, suggesting that alterations in AMPK have clinical 

consequences and may potentially contribute to the decline in stress tolerance observed with 

aging 19,20.  Intriguingly, our earlier studies have demonstrated that AMPK regulates myocardial 

metabolism during low-flow ischemia/reperfusion and limits ischemic injury and apoptosis 

during post-ischemic reperfusion 21. Specifically, the loss of AMPK function results in impaired 

glucose uptake and glycolysis, poor recovery of post-ischemic function, and increased myocyte 

necrosis and apoptosis 21. However, whether AMPK activity is reduced in aged heart and 

whether such a reduction contributes to increased ischemia injury in aged hearts have not been 

elucidated.   

We recently reported that macrophage migration inhibitory factor (MIF), an innate 

cytokine that controls the inflammatory ‘set point’ by regulating the release of other pro-

inflammatory cytokines22, modulates the activation of AMPK during ischemia, functionally 

linking inflammation and metabolism in the heart 23.  We anticipate that genetic variation in the 

expression of MIF, which is encoded in a functionally polymorphic locus 24, may impact the 

responsiveness of the human heart to ischemia via the AMPK pathway, and that diagnostic MIF 

genotyping might predict risk in patients with coronary artery disease 23.  Accordingly, it is 

important to delineate the effect of aging on the MIF-AMPK adaptive signaling pathway in 

response to ischemic stress.  In the present study, we show that aging leads to impaired cardiac 

AMPK activation during ischemia, which is associated with intolerance to ischemic stress in 

aged hearts.  
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RESULTS 

Impaired Ischemic Activation of AMPK in Aged Heart 

To investigate the impact of aging on heart AMPK signaling response to ischemia stress, we 

compared the AMPK signaling response in hearts from young (4-6 months, n=6) and aged (24-

26 months, n=6) mice (male C57BL/6 strain)  during in vivo regional ischemia. We observed that 

phosphorylation of AMPK at Thr172 of catalytic α subunit (Figure 1A) and the activity of 

AMPKα1 and α2 was decreased in aged hearts compared with their younger counterparts 

(Figure 1). Similar effects also were observed with the isolated-perfused hearts.  Low-flow (20 

min) global ischemia stimulated AMPK phosphorylation and activation without affecting AMPK 

protein abundance in both young hearts and aged hearts (Figure 2).  However, the activation of 

AMPK was markedly stronger in young hearts than aged hearts.  Taken together, these results 

suggest that the AMPK responsiveness to ischemia is reduced in the aged heart. 

Coronary Flow in Aged Hearts 

Both young and aged hearts were subject to a constant left atrial preload of 15 cm H2O and an 

aortic afterload of 80 H2O for 20 minutes, followed by 20 minutes of low flow ischemia 

(reducing afterload and coronary perfusion pressure to 30 cm H2O).  As shown in Figure 3, heart 

rates were similar in aged and young hearts during both control and ischemia. There was no 

significant difference in coronary flow at control and ischemic conditions between the two age 

groups. These data indicate that the ischemic stimulus is comparable in young and aged hearts 

during low flow ischemia in the working heart model. 

Aged Hearts Demonstrated Intolerance to Ischemic Injury  

Mounting evidence supports a beneficial effect of AMPK in limiting cardiac damage during 

ischemia/reperfusion 21,25,26.  To determine the consequences of the blunted ischemic AMPK 
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activation during aging, myocardial infarct size in response to in vivo regional 

ischemia/reperfusion was compared between young and aged hearts.  After 20 minutes of 

coronary artery ligation and 4 hours of reperfusion, the myocardial infarct size induced by in vivo 

regional ischemia/reperfusion in aged hearts was significantly larger than that in young hearts 

(Figure 4).  To confirm if the blunted ischemic AMPK activation is a factor associated with 

intolerance to ischemic injury during aging, we compared the response to ischemic stress of 

young AMPK-kinase dead (KD) transgenic mouse hearts and the WT littermates.  Notably, the 

myocardial infarct size was significantly greater in AMPK KD hearts than that in WT littermates 

hearts (Figure 4).  However, there was significant difference in infarct size between the aged WT 

and young AMPK-KD hearts (Figure 4). Together, these data suggest that impaired AMPK 

activation in aged hearts in response to ischemia might result in the increased infarct size during 

ischemia/reperfusion.  

Down-regulation of MIF Expression in Aged Heart 

We recently reported that endogenous MIF modulates the activation of cardiac AMPK, which 

plays an important role in mitigating cardiac damage caused by ischemia/reperfusion 23. To 

determine whether the blunted ischemic AMPK activation was due to MIF deficiency in the aged 

hearts, we examined the expression levels of MIF in both young and aged hearts.  The results 

demonstrated that both mRNA and protein expression of cardiac MIF were markedly decreased 

in the aged hearts compared with young hearts (Figure 5), supporting our hypothesis of an aging-

associated reduction of MIF, an up-stream factor in ischemic AMPK activation, in the hearts.  

This observation also is in line with the previous observation that MIF KO hearts display 

reduced tolerance to ischemic stress compared with WT mouse hearts 23. 
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Impaired AMPK Activation of MIF KO Hearts/Cardiomyocytes in Response to 

Ischemia/Hypoxia 

To verify the permissive role of MIF as a mediator of ischemic AMPK activation, in vivo 

regional ischemia was performed by occlusion of the left anterior descending artery (LAD) in 

both MIF KO and WT mice.  The results clearly showed that AMPK activation was markedly 

reduced in MIF KO hearts compared with WT hearts in response to in vivo regional ischemia 

(Figure 6A).  Moreover, the ischemic activation of AMPK was reduced in the MIF receptor, 

CD74 deficient heart as well (Figure 6A).  We next measured the response of isolated 

cardiomyocytes from both MIF KO and WT hearts to hypoxia treatment; the data showed that 

hypoxia stimulated AMPK phosphorylation of cardiomyocytes in a time-dependent manner and 

that the hypoxic AMPK activation of MIF KO cardiomyocytes was significantly impaired when 

compared to WT cardiomyocytes (Figure 6B).  MIF KO mice nevertheless demonstrated a 

normal baseline cardiac phenotype with respect to left ventricular size and function, histology, 

and the expression of AMPK and glucose transporter proteins 23.   

MIF Dampened Hypoxia-induced Contractile Dysfunction of Cardiomyocytes in Aged 

Hearts 

We also compared the response to hypoxia of cardiomyocytes from aged hearts with that from 

young hearts (Figure 7).  Hypoxia treatment resulted in dysfunction of contractility in both 

young and aged cardiomyocytes, i.e. depressed peak shortening (PS), maximal velocity of 

shortening/relengthening (±dL/dt), and prolonged time-to-90% re-lengthening (TR90).  

Nonetheless, the extent of hypoxic dysfunction was significantly accentuated in aged 

cardiomyocytes compared with young cardiomyocytes.  To determine whether relative MIF 

deficiency in the aged hearts (Figure 5) was responsible for compromised cardiomyocyte 
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mechanical function and AMPK activation during hypoxic stress, recombinanat MIF (10 ng/ml) 

was supplemented to the media during hypoxic incubation.  Exogenous MIF dampened hypoxic 

contractile dysfunction (Figure 7B, C, D and F) and restored AMPK activation (Figure 7G) in 

the aged cardiomyocytes (Figure 7). In contrast, MIF did not augment contractility and AMPK 

activation in young cardiomyocytes.  These data indicate that endogenous MIF release 

maximally induces AMPK phosphorylation and contractility during hypoxia in young 

cardiomyocytes. However, in the relatively MIF-deficient aged cardiomyocytes, exogenous MIF 

augmented contractility and AMPK activation during hypoxia. These data indicate that 

recombinant MIF (or MIF agonists) might show a therapeutic action by increasing AMPK 

activation during ischemia or hypoxia in the elderly with decreased expression MIF.   
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DISCUSSION 

Myocardial infarction is a major threat of morbidity and mortality in the elderly, and alterations 

in the heart that occur during aging result in decreased myocardial function and render it more 

susceptible to damage 27,28.  A common cause of damage to the myocardium is ischemic injury, 

and aging is known to be associated with an increase in myocardial susceptibility to ischemia 

and a decrease in post-ischemic recovery of cardiac function 29.  Elucidation of the mechanisms 

of aging in the heart thus may serve to improve the overall quality of cardiovascular health in 

this ever increasing patient population.   

In this study, we demonstrate for the first time that the expression of endogenous cardiac 

MIF, an up-stream activator of AMPK 23, is reduced in the aged hearts.  Moreover, ischemia-

induced AMPK activation was significantly blunted in the aged hearts, which may lead to greater 

myocardial injury in the aged versus young hearts.  Given mounting evidence that AMPK plays 

an important role in cardioprotection against myocardial ischemia 21,25,26, these observations 

provide strong evidence that cardiac MIF down-regulation and impaired ischemic AMPK 

activation may play a causative role in the intolerance of the aged heart to ischemic injury.   

We have focused previous research on the hypothesis that aging is accompanied by a 

reduced ability to activate adaptive responses to stress, and that this in turn contributes to the 

onset of age-related diseases and functional deficits that occur with normal aging.  Experiments 

in primary cultured hepatocytes derived from mice and rats of different ages support this view 

30,31.  We demonstrated that aging is associated with a diminished ability to activate pro-survival 

signaling pathways following oxidant exposure, which is usually correlated with reduced 

survival 30. In the heart, ATP depletion and the subsequent accumulation of AMP that results 

from ischemia activates AMPK, which is a central component of the cellular stress response that 
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shifts metabolism toward ATP restoration 32,33. Dually activated by AMP and by phosphorylation, 

AMPK promotes fatty acid oxidation and glucose uptake, while it inhibits anabolic processes 

such as fatty acid and protein synthesis 34. The activity of AMPK or its yeast homologue, Snf1, 

may be altered with age 17,18. Moreover, genetic mutations in AMPK cause metabolic 

dysfunction of cardiac and skeletal muscles, suggesting that alterations in AMPK have clinical 

consequences and may potentially contribute to the decline in stress tolerance observed with 

aging 19. Specifically, the loss of AMPK function results in impaired glucose uptake and 

glycolysis, poor recovery of post-ischemic function, and increased myocyte necrosis and 

apoptosis 21.  Thus, AMPK is critical in mediating the metabolic and functional responses of the 

heart to ischemia and reperfusion 21. Our results demonstrate that aging-associated reductions in 

ischemic AMPK activation may be an important contributing factor in the increased 

susceptibility of cardiomyocytes to ischemic injury.   

Recent studies have demonstrated that in addition to its pleiotropic role in inflammatory 

diseases 35, MIF also regulates metabolic responses 36,37.  In systemic inflammatory diseases, 

high levels of MIF are considered to be deleterious. However, we recently identified a novel 

mechanism for MIF action via AMPK activation that establishes an important link between 

pathways central to inflammation and metabolism. MIF release leads to the autocrine/paracrine 

activation of the AMPK signaling pathway in the ischemic heart 23.  The present study 

demonstrated that aging is associated with a down-regulation of cardiac MIF expression, which 

may lead to intolerance to ischemic stress due to reduced AMPK activation.  Furthermore, 

exogenous MIF restores ischemic AMPK activation in the aged cardiomyocytes and mitigates 

the contractile dysfunction of aged cardiomyocytes caused by hypoxia.  
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We conclude that an aging-associated reduction in MIF in the heart leads to a blunted, 

ischemic AMPK activation response that is an important contributing factor in the reduced 

tolerance to ischemia insult in aged individuals.  Pharmacologic interventions that restore MIF 

signaling and AMPK activity in the aged heart may be a novel means to limit cardiac damage 

caused by ischemia/reperfusion in older patients.    
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MATERIALS AND METHODS 

Experimental Animals.  Male C57BL/6 mice, 4-6 and 24-26 months of age (NIA, Baltimore, 

MD) and male transgenic mice (C57BL/6) that express a kinase dead (KD) rat α2 isoform (K45R 

mutation) driven by the muscle creatine kinase promoter, thereby enabling expression in cardiac 

and skeletal muscle, were gifts from Dr. M. Birnbaum 38.  MIF KO mice 39 were backcrossed 

into the C57BL/6 background (generation N10) at the Yale Animal Resource Center. MIF-

receptor KO mice (CD74-KO, C57BL/6) were obtained from Jackson Laboratories 40. All animal 

procedures carried out in this study were approved by the University of Wyoming Institutional 

Animal Care and Use Committee.  

In vivo Regional Ischemia and Experimental Myocardial Infarction.  Mice were 

anaesthetized, intubated and ventilated with oxygen (Harvard Rodent Ventilator, Harvard) 23.  

The core temperature was maintained at 37°C with a heating pad. After left lateral thoracotomy, 

the left anterior descending artery (LAD) was occluded for 20 min with an 8–0 nylon suture and 

polyethylene tubing to prevent arterial injury, and then reperfused for 4 h. Electrocardiograms 

confirmed ischemic repolarization changes (ST-segment elevation) during coronary occlusion 

(AD Instruments). The hearts then were excised and perfusion stained to delineate the extent of 

myocardial necrosis as a percent of non-perfused ischaemic area at risk (AAR). Viable tissue in 

the ischemic region was stained red by 2,3,5-triphenyltetrazolium (TTC) and the non-ischaemic 

region was stained blue with Evan's blue dye.  Hearts were fixed and sectioned into 1-mm slices, 

photographed using a Leica microscope and analyzed using NIH Image software. 

Activity of AMPK in Young and Aged Hearts.  Isoform-specific (α1 and α2) AMPK activity 

was determined using a previously described immune complex kinase assay 41.  AMPK was 

immunopurified from heart lysates with protein G/A Sepharose coupled to α subunit isoform-
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specific antibodies. The immunocomplexes were washed extensively and AMPK activity was 

determined with the SAMS peptide (HMRSAMSGLHLVKRR).  

Working Heart Perfusion and Measurement of Cardiac Function.  Mice were deeply 

anesthetized with sodium pentobarbital (5–10 mg i.p.) and hearts were excised and placed in an 

ex vivo working heart system 42.  Heart rate and ventricular pressure were recorded with a 

pressure transducer in the aortic outflow line (Harvard Apparatus) 43.  Data were collected with 

the Chart5 system from AD Instruments.  Cardiac output and aortic flows were obtained by 

measuring the flow into the left atria and from the afterload line with the Transonic flow probes. 

Coronary flow was calculated from the difference of the cardiac output and aortic flows.  

Immunoblotting.  Immunoblots were performed as previously described 44.  Heart homogenates 

were resolved by SDS-PAGE and transferred onto polyvinylidene difluoride membranes.  For 

reprobing, membranes were stripped with 50 mmol/L Tris-HCl, 2% SDS, and 0.1 mol/L β–

mercaptoethanol (pH 6.8). Rabbit polyclonal antibodies against phosphor-AMPK and total 

AMPK were purchased from Cell Signaling.  Rabbit polyclonal antibodies against MIF and β–

tubulin were from Santa Cruz. 

mRNA Analysis by Real-time PCR.  Heart RNA was isolated using TRIzol® regent (Invitrogen) 

and RNAeasy (Qiagen). cDNA was synthesized using the  ThermoScriptTM RT-PCR system 

(Invitrogen) at a concentration of 100 ng RNA/µl cDNA.  The iCycler Q-PCR machine and 

SYBR Green Supermix from Bio-Rad were used 45. All reactions had a correlation coefficient of  

≥0.98, efficiency in the 90–110% range, and were performed in duplicate. For each target gene, a 

standard curve was constructed and the starting quantity (SQ) of mRNA was calculated using the 

Bio-Rad iCycler iQ Real-Time PCR Detection System Software. Results for each sample were 

normalized by dividing the SQ of the target gene by the SQ of β-actin for that same sample. The 
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specific amplification of the desired target gene was verified by the correlation coefficient of the 

standard curve of ≥ 0.98, the appearance of a single peak in the melting curve at the predicted 

temperature, and the appearance of a single band of the predicted length upon gel electrophoresis. 

Table 1 shows the specific primers and reaction conditions. 

 

Table 1. Quantitative PCR primersa 
Sense Primer 5’ to 3’ Accession# 

Antisense Primer 5’ to 3’ 
Exon   Position 

NM_010798 
(MIF) 
 
NM_007393 
(β-actin)  

    CGGACCGGGTCTACATCAA 
    
TCAAGCGAAGGTGGAACCGTT
 
   
AGAGGGAAATCGTGCGTGAC 
   
CAATAGTGATGACCTGGCCGT   

  2 
  3 
 

 4 
 4 
 

357 
430 
 
693 
830 

aThe primers were designed using the Beacon Designer Software from Bio-Rad.  The 
reactions employed SYBR Green Supermix and the conditions were: 1 cycle of 95ºC for 3 min; 
40 cycles of 95ºC for 15 sec followed by 60ºC for 1 min. 

 
 

Isolation of Mouse Cardiomyocytes and Measurement of Cardiomyocyte Contractile 

Function.  Cardiomyocytes were enzymatically isolated as described previously 46,47.  The 

mechanical properties of cardiomyocytes were assessed using a SoftEdge MyoCam system 

(IonOptix Corporation, Milton, MA) 47. IonOptix SoftEdge software was used to capture changes 

in cell length during shortening and re-lengthening. Cell shortening and re-lengthening were 

assessed using the following indices: peak shortening (PS), the amplitude myocytes shortened on 

electrical stimulation, which is indicative of peak ventricular contractility; time-to-PS (TPS), the 

duration of myocyte shortening, which is indicative of systolic duration; time-to-90% re-

lengthening (TR90); the duration to reach 90% re-lengthening, which is indicative of diastolic 

duration (90% rather 100% re-lengthening was used to avoid noisy signal at baseline 
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concentration); and maximal velocities of shortening/re-lengthening, maximal slope (derivative) 

of shortening and re-lengthening phases, which is indicative of maximal velocities of ventricular 

pressure increase/decrease. Native sequence, mouse MIF was produced recombinantly as 

described previously 48.  

Statistical Analysis.  Data were means ± SEM. Significance was tested by Student 2-tail t tests 

or 2-way repeated measures ANOVA with Bonferroni correction for multiple comparisons when 

appropriate. 
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Figure Legends 

Figure 1.  Impaired in vivo regional ischemic AMPK phosphorylation and activation in aged 

hearts. (A) In vivo regional ischemia (30 min) stimulates differential phosphorylation of AMPK, 

as assessed by immunobloting. (B) Differential activation of AMPKα1 and α2 catalytic subunit 

isoforms by kinase assay in young versus aged mouse hearts. Values are means ± SEM, n=6. 

*P<0.01 vs. control; †P<0.01 vs. young ischemia. 

Figure 2.  Impaired in vitro global ischemic AMPK activation in the aged hearts.  (A) AMPK 

phosphorylation by immunoblotting of isolated heart tissue after in vitro global low flow (20 

min).  (B) Differential activation of AMPK α1 and α2 catalytic subunit isoforms by kinase assay, 

in young versus aged mouse hearts. Values are means ± SEM, n=6. *P<0.01 vs. control; 

†P<0.01 vs. young ischemia. 

Figure 3.  Functional parameters of isolated working heart from young and aged mice. Cardiac 

function was measured and calculated in aerobically perfused hearts for 20 min, then subjected 

to a 20 min period of low flow ischemia. Values are means ± SEM, n=6.  *P<0.01 vs. control. 

Figure 4.  Myocardial infarct size after ischemia/reperfusion in young, aged and AMPK KD 

mice.  Hearts were subjected to ischemia (20 minutes)/reperfusion (4 hours), and then studied by 

dual staining to assess the extent of myocardial necrosis. Representative sections are shown 

(upper panel).  Bar graphs represent the ratio of infarct size (INF) to area at risk (AAR) in young, 

aged and young AMPK KD hearts (lower panel).  Values are means ± SE for 4 independent 

experiments. *P<0.05 vs young; †P<0.01 vs. aged. 

Figure 5.  Cardiac MIF expression levels in young and aged hearts. (A) The quantitative PCR 

values for MIF are expressed relative to mRNA for β-actin as described in the Materials and 

Methods.  (B) Representative immunoblots of MIF and β–tubulin in heart homogenates (upper 
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panel). Bar graphs represent the relative levels of MIF expression after normalizing to β-tubulin 

(lower panel). Values are means ± SEM, n=6.  *P<0.01 vs. young. 

Figure 6.  Impaired ischemic AMPK activation in MIF KO and CD74 KO hearts. (A) MIF KO, 

CD74 KO and WT mice were subjected to in vivo regional ischemia by LAD occlusion for 5 min, 

10 min and 30 min to determine the degree of ischemic AMPK activation. Representative 

immunoblots of p-AMPK (Thr172) and total AMPKα are shown (upper panel). Bar graphs 

represent the relative levels of p-AMPK (lower panel).   Values are means ± SEM, n=6.  

*P<0.01 vs. control, †P<0.05 vs. WT ischemia, respectively. (B) The kinetics of AMPK 

phosphorylation induced by hypoxia in WT and MIF KO cardiomyocytes. Representative 

immunoblots of p-AMPK (Thr172) and total AMPKα (upper panel).  Bar graphs represent the 

relative levels of p-AMPK (lower panel).  Values are means ± SEM, n=4.  *P<0.01 vs. control, 

†P<0.05 vs. WT hypoxia, respectively. 

Figure 7.  Contractile properties of cardiomyocytes from young and aged hearts. 

Cardiomyocytes were enzymatically isolated and their mechanical properties assessed using a 

SoftEdge MyoCam system. (A) Resting cell length. (B) Peak shortening (PS, normalized to cell 

length). (C and D) Maximal velocity of shortening (+dL/dt) and re-lengthening (-dL/dt).  (E) 

Time-to-PS (TPS). (F) Time-to-90% relengthening (TR90).  Values are means ± SEM, n = 60-90 

cells per group, *P< 0.05 vs. control, #P <0.05 vs. young hypoxia, †P<0.05 vs. aged hypoxia. (G) 

Representative immunoblots of p-AMPK (Thr172) and total AMPKα (upper panel). Bar graphs 

represent the relative levels of p-AMPK (lower panel).   Values are means ± SEM, n=6.  

*P<0.01 vs. control, #P <0.05 vs. young hypoxia, †P<0.05 vs. aged hypoxia. 
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