28,754 research outputs found
Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation
The aim of the present work was to increase bacterial adhesion on anode via inducing membrane modifications to enhance textile wastewater treatment in Microbial Fuel Cell (MFC). Real textile wastewater was used in mediator-less MFCs for bacterial enrichment. The enriched bacteria were pre-treated by exposure to 1 KGy gamma radiation and were tested in MFC setup. Bacterial cell membrane permeability and cell membrane charges were measured using noninvasive dielectric spectroscopy measurements. The results show that pre-treatment using gamma radiation resulted in biofilm formation and increased cell permeability and exopolysaccharide production; this was reflected in both MFC performance (average voltage 554.67 mV) and decolorization (96.42%) as compared to 392.77 mV and 60.76% decolorization for non-treated cells. At the end of MFC operation, cytotoxicity test was performed for treated wastewater using a dermal cell line, the results obtained show a decrease in toxicity from 24.8 to 0 (v/v%) when cells were exposed to gamma radiation. Fourier-transform infrared (FTIR) spectroscopy showed an increase in exopolysaccharides in bacterial consortium exposed to increasing doses of gamma radiation suggesting that gamma radiation increased exopolysaccharide production, providing transient media for electron transfer and contributing to accelerating MFC performance. Modification of bacterial membrane prior to MFC operation can be considered highly effective as a pre-treatment tool that accelerates MFC performance
Microbial fuel cells: a green and alternative source for bioenergy production
Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)
Brain-state determines learning improvements after transcranial alternating-current stimulation to frontal cortex
Published in final edited form as:
Brain Stimul. 2018 ; 11(4): 723–726. doi:10.1016/j.brs.2018.02.008BACKGROUND
Theories of executive control propose that communication between medial frontal cortex (MFC) and lateral prefrontal cortex (lPFC) is critical for learning. 6-Hz phase synchronization may be the mechanism by which neural activity between MFC and lPFC is coordinated into a functional network. Recent evidence suggests that switching from eyes closed to open may induce a change in brain-state reflected by enhanced executive control and related functional connectivity.
OBJECTIVE/HYPOTHESIs
To examine whether causal manipulation of MFC and lPFC can improve learning according to the brain-state induced by switching from eyes closed to open.
METHODS
Within-subjects, sham-controlled, double-blind study of 30 healthy subjects, each receiving 6-Hz in-phase high definition transcranial alternating-current stimulation (HD-tACS) applied to MFC and right lPFC prior to performing a time estimation task.
RESULTS
HD-tACS with eyes open improved learning ability relative to sham, whereas HD-tACS with eyes closed had no significant effect on behavior.
CONCLUSION
Results suggest a phase-sensitive mechanism in frontal cortex mediates components of learning performance in a state-dependent manner.Accepted manuscrip
Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells
The aim of this study was to assess the environmental impact of microbial fuel cells (MFCs) implemented in constructed wetlands (CWs). To this aim a life cycle assessment (LCA) was carried out comparing three scenarios: 1) a conventional CW system (without MFC implementation); 2) a CW system coupled with a gravel-based anode MFC, and 3) a CW system coupled with a graphite-based anode MFC. All systems served a population equivalent of 1500 p.e. They were designed to meet the same effluent quality. Since MFCs implemented in CWs improve treatment efficiency, the CWs coupled with MFCs had lower specific area requirement compared to the conventional CW system. The functional unit was 1 m3 of wastewater. The LCA was performed with the software SimaPro® 8, using the CML-IA baseline method. The three scenarios considered showed similar environmental performance in all the categories considered, with the exception of Abiotic Depletion Potential. In this impact category, the potential environmental impact of the CW system coupled with a gravel-based anode MFC was around 2 times higher than that generated by the conventional CW system and the CW system coupled with a graphite-based anode MFC. It was attributed to the large amount of less environmentally friendly materials (e.g. metals, graphite) for MFCs implementation, especially in the case of gravel-based anode MFCs. Therefore, the CW system coupled with graphite-based anode MFC appeared as the most environmentally friendly solution which can replace conventional CWs reducing system footprint by up to 20%. An economic assessment showed that this system was around 1.5 times more expensive than the conventional CW system.Peer ReviewedPostprint (author's final draft
Nitric acid activation of graphite granules to increase the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFC applications
Nitric acid and thermal activation of graphite granules were explored to increase the electrocatalytic performance of dissolved oxygen reduction at neutral pH for microbial fuel cell (MFC) applications. Electrochemical experiments showed an improvement of +400 mV in open circuit potential for graphite granules when they were activated. The improvement of ORR performance observed with activated granules was correlated to the increase of Brunauer–Emmett–Teller (BET) surface of the activated material and the emergence of nitrogen superficial groups revealed by X-ray photoelectron spectroscopy (XPS) analysis on its surface. The use of activated graphite granules in the cathodic compartment of a dual-chamber MFC led to a high open circuit voltage of 1050 mV, which is among one of the highest reported so far. The stable performance of this cathode material (current density of 96 A m−3 at +200 mV/Ag–AgCl) over a period of 10 days demonstrated its applicability as a cathode material without any costly noble metal
Application of electro-active biofilms
The concept of an electro-active biofilm (EAB) has recently emerged from a few studies that discovered that certain bacteria which form biofilms on conductive materials can achieve a direct electrochemical connection with the electrode surface using it as electron exchanger, without the aid of mediators. This electro-catalytic property of biofilms has been clearly related to the presence of some specific strains that are able to exchange electrons with solid substrata (eg Geobacter sulfurreducens and Rhodoferax ferrireducens). EABs can be obtained principally from natural sites such as soils or seawater and freshwater sediments or from samples collected from a wide range of different microbially rich environments (sewage sludge, activated sludge, or industrial and domestic effluents). The capability of some microorganisms to connect their metabolisms directly in an external electrical power supply is very exciting and extensive research is in progress on exploring the possibilities of EABs applications. Indeed, the best known application is probably the microbial fuel cell technology that is capable of turning biomass into electrical energy. Nevertheless, EABs coated onto electrodes have recently become popular in other fields like bioremediation, biosynthesis processes, biosensor design, and biohydrogen production
Increased power from a two-chamber microbial fuel cell with a low-pH air-cathode compartment
Pt-supported air-cathodes still need improvement if their application in MFC technology is to be sustainable. In this context, the efficiency of an air-cathode was studied with respect to the pH of the solution it was exposed to. Voltammetry showed that oxygen reduction was no longer limited by H+ availability for pH lower than 3.0. A new MFC was designed with a catholyte compartment setup between the anode compartment and the air-cathode. With a catholyte compartment at pH 1.0, the MFC provided up to 5 W/m2, i.e., 2.5-fold the power density obtained with the same anode and cathode in a single-chamber MFC working at pH 7.5. Current density exceeded 20 A/m2. The benefit of low-pH in the catholyte chamber largely counterbalanced the mass transfer hindrance due the membrane that separated the two compartments. The MFC kept 66% its performance during nine days of continuous operation
Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the \u3cem\u3eActa1\u3c/em\u3e H40Y Murine Model of Nemaline Myopathy
Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation
The application of traction control systems (TCS) for electric vehicles (EV)
has great potential due to easy implementation of torque control with
direct-drive motors. However, the control system usually requires road-tire
friction and slip-ratio values, which must be estimated. While it is not
possible to obtain the first one directly, the estimation of latter value
requires accurate measurements of chassis and wheel velocity. In addition,
existing TCS structures are often designed without considering the robustness
and energy efficiency of torque control. In this work, both problems are
addressed with a smart TCS design having an integrated acoustic road-type
estimation (ARTE) unit. This unit enables the road-type recognition and this
information is used to retrieve the correct look-up table between friction
coefficient and slip-ratio. The estimation of the friction coefficient helps
the system to update the necessary input torque. The ARTE unit utilizes machine
learning, mapping the acoustic feature inputs to road-type as output. In this
study, three existing TCS for EVs are examined with and without the integrated
ARTE unit. The results show significant performance improvement with ARTE,
reducing the slip ratio by 75% while saving energy via reduction of applied
torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22
Jan 201
From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater
The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a “short-circuited” microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment
- …
