14,560 research outputs found

    Metallothionein as an indicator of water quality: assessment of the bioavailability of cadmium, copper, mercury and zinc in aquatic animals at the cellular level

    Get PDF
    The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment

    Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae

    Get PDF
    The present investigation evaluates the toxic potential of Cd in larvae of the frog Xenopus laevis after 12 days of exposure to environmentally relevant contamination levels, close to those measured in the river Lot (France). Several genotoxic and detoxification mechanisms were analyzed in the larvae: clastogenic and/or aneugenic effects in the circulating blood by micronucleus (MN) induction, metallothionein (MT) production in whole larvae, gene analyses and Cd content in the liver and also in the whole larvae. The results show: (i) micronucleus induction at environmental levels of Cd contamination (2, 10, 30 μg L−1); (ii) an increased and concentration-dependent quantity of MT in the whole organism after contamination with 10 and 30 μg Cd L−1 (a three- and six-fold increase, respectively) although no significant difference was observed after contamination with 2 μg Cd L−1; (iii) Cd uptake by the whole organism and by the liver as a response to Cd exposure conditions; (4) up-regulation of the genes involved in detoxification processes and response to oxidative stress, while genes involved in DNA repair and apoptosis were repressed. The results confirm the relevance of the amphibian model and highlight the complementarity between a marker of genotoxicity, MT production, bioaccumulation and genetic analysis in the evaluation of the ecotoxicological impact

    Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts

    Get PDF
    In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans

    Tissue-specific expression from a compound TATA-dependent and TATA-independent promoter

    Get PDF
    We have found that the mouse metallothionein-I (MT-I) gene promoter functions in an unusual, compound manner. It directs both TATA-dependent and TATA-independent modes of transcription in vivo. The TATA-dependent message is initiated at the previously characterized +1 transcription start site and is the predominant species in most tissues. In many cell types it is metal inducible. The TATA-independent initiation sites are distributed over the 160 bp upstream of the previously characterized +1 start site, and the RNA products are present in all tissues examined. Only in testis, however, do the TATA-independent transcripts predominate, accumulating to highest levels in pachytene-stage meiotic cells and early spermatids. Unlike the TATA-dependent +1 transcript, these RNAs are not induced by metal, even in cultured cells in which the +1 species is induced. Transfection studies of site-directed mutants show that destruction of the TATA element drastically alters the ratio of the two RNA classes in cells in which the +1 transcripts normally dominates. In TATA-minus mutants, the TATA-independent RNAs become the most prevalent, although they remain refractory to metal induction. Thus, the MT-I promoter utilizes two different types of core promoter function within a single cell population. The two different types of core promoter respond very differently to environmental stimuli, and the choice between them appears to be regulated in a tissue-specific fashion

    The transcriptional response of Caenorhabditis elegans to ivermectin exposure identifies novel genes involved in the response to reduced food intake

    Get PDF
    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms

    The toxicity of cadmium and resulting hazards for human health

    Get PDF
    Cadmium (Cd) has been in industrial use for a long period of time. Its serious toxicity moved into scientific focus during the middle of the last century. In this review, we discuss historic and recent developments of toxicological and epidemiological questions, including exposition sources, resorption pathways and organ damage processes

    Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation.

    Get PDF
    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide

    Cadmium in newborns

    Get PDF
    Cadmium (Cd) is a well-known nephrotoxic environmental contaminant but there are indications that the developing nervous system might be even more sensitive to Cd than the kidneys in adults. Infants are exposed to Cd from various formulas and infant diets and the gastrointestinal Cd uptake is believed to be higher in newborns than in adults. Cd levels monitored in infant foods ranged between 0.74 and 27.0 µg/kg. Cow's milk formulas had the lowest levels and cereal-based formulas had up to 21 times higher mean levels. The mean weekly Cd exposure from the recommended formula intake was calculated to vary between 0.10 and 3.05 µg/kg body weight. Rat pups received an oral dose of 109Cd in water or four different formulas. The whole-body Cd retention was higher in the pups than previously reported in adult animals and highest in the water and in the cow's milk formula groups. The small intestinal Cd retention was high, even 9 days after exposure indicating a long absorption period in the newborns. Cd levels in kidney increased still 12 days after exposure in all diet groups. Piglets received low daily doses of Cd in water or wheat/oat/milk-based follow-up formula. The formula reduced Cd uptake in comparison to water, but the distribution of Cd to the kidneys was unexpectedly higher when Cd was given in formula than in water. Simulated infant digestion of infant foods resulted in lower solubility of Cd compared to adult digestion. In a human Caco-2 cell model, cellular Cd uptake and transport from five different infant food digests was approximately one order of magnitude lower than the solubility and varied between 4-6 % and 1-2 % of the dose, respectively. Binding of Cd to dietary fibres and phytic acid reduces intestinal Cd retention and probably explains the lower Cd bioavailability from cereal-based formulas compared to water or cow's milk formula. The exposure of Cd is higher from infant formulas than from breast milk and age-specific digestion conditions as well as composition of diets affect both the Cd solubility and bioavailability. The calculated Cd intake from recommended amount of infant formulas is below the established provisional tolerable weekly intake, which however, does not include a safety factor and is based on renal effects in adults
    corecore