52,322 research outputs found

    Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt into Fertile Peridotite at 3GPa and Genesis of Alkalic Magmas

    Get PDF
    We performed experiments between two different carbonated eclogite-derived melts and lherzolite at 1375°C and 3 GPa by varying the reacting melt fraction from 8 to 50 wt %. The two starting melt compositions were (1) alkalic basalt with 11·7 wt % dissolved CO2 (ABC), (2) basaltic andesite with 2·6 wt % dissolved CO2 (BAC). The starting melts were mixed homogeneously with peridotite to simulate porous reactive infiltration of melt in the Earth’s mantle. All the experiments produced an assemblage of melt + orthopyroxene + clinopyroxene + garnet ± olivine; olivine was absent for a reacting melt fraction of 50 wt % for ABC and 40 wt % for BAC. Basanitic ABC evolved to melilitites (on a CO2-free basis, SiO2 ∼27–39 wt %, TiO2 ∼2·8–6·3 wt %, Al2O3 ∼4·1–9·1 wt %, FeO* ∼11–16 wt %, MgO ∼17–21 wt %, CaO ∼13–21 wt %, Na2O ∼4–7 wt %, CO2 ∼10–25 wt %) upon melt–rock reaction and the degree of alkalinity of the reacted melts is positively correlated with melt–rock ratio. On the other hand, reacted melts derived from BAC (on a CO2-free basis SiO2 ∼42–53 wt %, TiO2 ∼6·4–8·7 wt %, Al2O3 ∼10·5–12·3 wt %, FeO* ∼6·5–10·5 wt %, MgO ∼7·9–15·4 wt %, CaO ∼7·3–10·3 wt %, Na2O ∼3·4–4 wt %, CO2 ∼6·2–11·7 wt %) increase in alkalinity with decreasing melt–rock ratio. We demonstrate that owing to the presence of only 0·65 wt % of CO2 in the bulk melt–rock mixture (corresponding to 25 wt % BAC + lherzolite mixture), nephelinitic-basanite melts can be generated by partial reactive crystallization of basaltic andesite as opposed to basanites produced in volatile-free conditions. Post 20% olivine fractionation, the reacted melts derived from ABC at low to intermediate melt–rock ratios match with 20–40% of the population of natural nephelinites and melilitites in terms of SiO2 and CaO/Al2O3, 60–80% in terms of TiO2, Al2O3 and FeO, and <20% in terms of CaO and Na2O. The reacted melts from BAC, at intermediate melt–rock ratios, are excellent matches for some of the Mg-rich (MgO >15 wt %) natural nephelinites in terms of SiO2, Al2O3, FeO*, CaO, Na2O and CaO/Al2O3. Not only can these reacted melts erupt by themselves, they can also act as metasomatizing agents in the Earth’s mantle. Our study suggests that a combination of subducted, silica-saturated crust–peridotite interaction and the presence of CO2 in the mantle source region are sufficient to produce a large range of primitive alkalic basalts. Also, mantle potential temperatures of 1330–1350°C appear sufficient to produce high-MgO, primitive basanite–nephelinite if carbonated eclogite melt and peridotite interaction is taken into account

    Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust

    Get PDF
    Many unresolved questions in geodynamics revolve around the physical behaviour of the two-phase system of a silicate melt percolating through and interacting with a tectonically deforming host rock. Well-accepted equations exist to describe the physics of such systems and several previous studies have successfully implemented various forms of these equations in numerical models. To date, most such models of magma dynamics have focused on mantle flow problems and therefore employed viscous creep rheologies suitable to describe the deformation properties of mantle rock under high temperatures and pressures. However, the use of such rheologies is not appropriate to model melt extraction above the lithosphere-asthenosphere boundary, where the mode of deformation of the host rock transitions from ductile viscous to brittle elasto-plastic. Here, we introduce a novel approach to numerically model magma dynamics, focusing on the conceptual study of melt extraction from an asthenospheric source of partial melt through the overlying lithosphere and crust. To this end, we introduce an adapted set of two-phase flow equations, coupled to a visco-elasto-plastic rheology for both shear and compaction deformation of the host rock in interaction with the melt phase. We describe in detail how to implement this physical model into a finite-element code, and then proceed to evaluate the functionality and potential of this methodology using a series of conceptual model setups, which demonstrate the modes of melt extraction occurring around the rheological transition from ductile to brittle host rocks. The models suggest that three principal regimes of melt extraction emerge: viscous diapirism, viscoplastic decompaction channels and elasto-plastic dyking. Thus, our model of magma dynamics interacting with active tectonics of the lithosphere and crust provides a novel framework to further investigate magmato-tectonic processes such as the formation and geometry of magma chambers and conduits, as well as the emplacement of plutonic rock complexe

    Melting of Amphibole-bearing Wehrlites: an Experimental Study on the Origin of Ultra-calcic Nepheline-normative Melts

    Get PDF
    Olivine + clinopyroxene ± amphibole cumulates have been widely documented in island arc settings and may constitute a significant portion of the lowermost arc crust. Because of the low melting temperature of amphibole (∼1100°C), such cumulates could melt during intrusion of primary mantle magmas. We have experimentally (piston-cylinder, 0·5-1·0 GPa, 1200-1350°C, Pt-graphite capsules) investigated the melting behaviour of a model amphibole-olivine-clinopyroxene rock, to assess the possible role of such cumulates in island arc magma genesis. Initial melts are controlled by pargasitic amphibole breakdown, are strongly nepheline-normative and are Al2O3-rich. With increasing melt fraction (T > 1190°C at 1·0 GPa), the melts become ultra-calcic while remaining strongly nepheline-normative, and are saturated with olivine and clinopyroxene. The experimental melts have strong compositional similarities to natural nepheline-normative ultra-calcic melt inclusions and lavas exclusively found in arc settings. The experimentally derived phase relations show that such natural melt compositions originate by melting according to the reaction amphibole + clinopyroxene = melt + olivine in the arc crust. Pargasitic amphibole is the key phase in this process, as it lowers melting temperatures and imposes the nepheline-normative signature. Ultra-calcic nepheline-normative melt inclusions are tracers of magma-rock interaction (assimilative recycling) in the arc crus

    Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii

    Get PDF
    The Hawaii Scientific Drilling Project recovered ~3 km of basalt by coring into the flank of Mauna Kea volcano at Hilo, Hawaii. Rocks recovered from deeper than ~1 km were deposited below sea level and contain considerable fresh glass. We report electron microprobe analyses of 531 glasses from the submarine section of the core, providing a high-resolution record of petrogenesis over ca. 200 Kyr of shield building of a Hawaiian volcano. Nearly all the submarine glasses are tholeiitic. SiO2 contents span a significant range but are bimodally distributed, leading to the identification of low-SiO2 and high-SiO2 magma series that encompass most samples. The two groups are also generally distinguishable using other major and minor elements and certain isotopic and incompatible trace element ratios. On the basis of distributions of high- and low-SiO2 glasses, the submarine section of the core is divided into four zones. In zone 1 (1079–~1950 mbsl), most samples are degassed high-SiO2 hyaloclastites and massive lavas, but there are narrow intervals of low-SiO2 hyaloclastites. Zone 2 (~1950–2233 mbsl), a zone of degassed pillows and hyaloclastites, displays a continuous decrease in silica content from bottom to top. In zone 3 (2233–2481 mbsl), nearly all samples are undegassed low-SiO2 pillows. In zone 4 (2481–3098 mbsl), samples are mostly high-SiO2 undegassed pillows and degassed hyaloclastites. This zone also contains most of the intrusive units in the core, all of which are undegassed and most of which are low-SiO2. Phase equilibrium data suggest that parental magmas of the low-SiO2 suite could be produced by partial melting of fertile peridotite at 30–40 kbar. Although the high-SiO2 parents could have equilibrated with harzburgite at 15–20 kbar, they could have been produced neither simply by higher degrees of melting of the sources of the low-SiO2 parents nor by mixing of known dacitic melts of pyroxenite/eclogite with the low-SiO2 parents. Our hypothesis for the relationship between these magma types is that as the low-SiO2 magmas ascended from their sources, they interacted chemically and thermally with overlying peridotites, resulting in dissolution of orthopyroxene and clinopyroxene and precipitation of olivine, thereby generating high-SiO2 magmas. There are glasses with CaO, Al2O3, and SiO2 contents slightly elevated relative to most low-SiO2 samples; we suggest that these differences reflect involvement of pyroxene-rich lithologies in the petrogenesis of the CaO-Al2O3-enriched glasses. There is also a small group of low-SiO2 glasses distinguished by elevated K2O and CaO contents; the sources of these samples may have been enriched in slab-derived fluid/melts. Low-SiO2 glasses from the top of zone 3 (2233–2280 mbsl) are more alkaline, more fractionated, and incompatible-element-enriched relative to other glasses from zone 3. This excursion at the top of zone 3, which is abruptly overlain by more silica-rich tholeiitic magmas, is reminiscent of the end of Mauna Kea shield building higher in the core

    Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions

    Get PDF
    We explore the controls, mechanisms and timing of generation of primary melts and their compositions, and show that the novel studies of melt inclusions in migmatites can provide important insights into the processes of crustal anatexis of a particular rock. Partial melting in the source region of granites is dependent on five main processes: (i) supply of heat; (ii) mineral–melt interface reactions associated with the detachment and supply of mineral components to the melt, (iii) diffusion in the melt, (iv) diffusion in minerals, and (v) recrystallization of minerals. As the kinetics of these several processes vary over several orders of magnitude, it is essential to evaluate in Nature which of these processes control the rate of melting, the composition of melts, and the extent to which residue–melt chemical equilibrium is attained under different circumstances. To shed light on these issues, we combine data from experimental and melt inclusion studies. First, data from an extensive experimental program on the kinetics of melting of crustal protoliths and diffusion in granite melt are used to set up the necessary framework that describes how primary melt compositions are established during crustal anatexis. Then, we use this reference frame and compare compositional trends from experiments with the composition of melt inclusions analyzed in particular migmatites. We show that, for the case of El Hoyazo anatectic enclaves in lavas, the composition of glassy melt inclusions provides important information on the nature and mechanisms of anatexis during the prograde suprasolidus history of these rocks, including melting temperatures and reactions, and extent of melt interconnection, melt homogenization and melt–residue equilibrium. Compositional trends in several of the rehomogenized melt inclusions in garnet from migmatites/granulites in anatectic terranes are consistent with diffusion in melt-controlled melting, though trace element compositions of melt inclusions and coexisting minerals are necessary to provide further clues on the nature of anatexis in these particular rocks.This work was supported by the National Science Foundation [grants EAR-9603199, EAR-9618867, EAR-9625517 and EAR-9404658], the Italian Consiglio Nazionale delle Ricerche, the European Commission (grant 01-LECEMA22F through contract No. ERAS-CT-2003-980409; and a H2020 Marie Skłodowska-Curie Actions under grant agreement No. 654606), the Italian Ministry of Education, University and Research (grants PRIN 2007278A22, 2010TT22SC and SIR RBSI14Y7PF), the Università degli Studi di Padova [Progetto di Ateneo CPDA107188/10 and a Piscopia—Marie Curie Fellowship under grant agreement No. 600376], the Australian Research Council (Australian Professorial Fellowship and Discovery Grants Nos. DP0342473 and DP0556700), and the National Research Foundation (South Africa; Incentives For Rated Researchers Program)

    Vesicularity, bubble formation and noble gas fractionation during MORB degassing

    Full text link
    The objective of this study is to use molecular dynamics simulation (MD) to evaluate the vesicularity and noble gas fractionation, and to shed light on bubble formation during MORB degassing. A previous simulation study (Guillot and Sator (2011) GCA 75, 1829-1857) has shown that the solubility of CO2 in basaltic melts increases steadily with the pressure and deviates significantly from Henry's law at high pressures (e.g. 9.5 wt% CO2 at 50 kbar as compared with 2.5 wt% from Henry's law). From the CO2 solubility curve and the equations of state of the two coexisting phases (silicate melt and supercritical CO2), deduced from the MD simulation, we have evaluated the evolution of the vesicularity of a MORB melt at depth as function of its initial CO2 contents. An excellent agreement is obtained between calculations and data on MORB samples collected at oceanic ridges. Moreover, by implementing the test particle method (Guillot and Sator (2012) GCA 80, 51-69), the solubility of noble gases in the two coexisting phases (supercritical CO2 and CO2-saturated melt), the partitioning and the fractionation of noble gases between melt and vesicles have been evaluated as function of the pressure. We show that the melt/CO2 partition coefficients of noble gases increase significantly with the pressure whereas the large distribution of the 4He/40Ar* ratio reported in the literature is explained if the magma experiences a suite of vesiculation and vesicle loss during ascent. By applying a pressure drop to a volatile bearing melt, the MD simulation reveals the main steps of bubble formation and noble gas transfer at the nanometric scale. A key result is that the transfer of noble gases is found to be driven by CO2 bubble nucleation, a finding which suggests that the diffusivity difference between He and Ar in the degassing melt has virtually no effect on the 4He/40Ar* ratio measured in the vesicles.Comment: 42 pages, 8 figures. To be published in Chemical Geolog
    corecore