437,827 research outputs found
Hybrid Simulation between Molecular Dynamics and Binary Collision Approximation Codes for Hydrogen injection onto Carbon Materials
Molecular dynamics (MD) simulation with modified Brenner's reactive empirical
bond order (REBO) potential is a powerful tool to investigate plasma wall
interaction on divertor plates in a nuclear fusion device. However, MD
simulation box's size is less than several nm for the performance of a
computer. To extend the size of the MD simulation, we develop a hybrid
simulation code between MD code using REBO potential and binary collision
approximation (BCA) code. Using the BCA code instead of computing all particles
with a high kinetic energy for every step in the MD simulation, considerable
computation time is saved. By demonstrating a hydrogen atom injection on a
graphite by the hybrid simulation code, it is found that the hybrid simulation
code works efficiently in a large simulation box.Comment: 5 pages, 5 figure
Modelling and simulation on the tool wear in nanometric cutting
Tool wear is a significant factor affecting the machined surface quality. In this paper, a Molecular Dynamics (MD) simulation approach is proposed to model the wear of the diamond tool in nanometric cutting. It includes the effects of the cutting heat on the workpiece property. MD simulation is carried out to simulate the nanometric cutting of a single crystal silicon plate with the diamond tip of an Atomic Force Microscope (AFM). The wear mechanism is investigated by the calculation of the temperature, the stress in the diamond tip, and the analysis of the relationship between the temperature and sublimation energy of the diamond atoms and silicon atoms. Microstrength is used to characterize the wear resistance of the diamond tool. The machining trials on an AFM are performed to validate the results of the MD simulation. The results of MD simulation and AFM experiments all show that the thermo-chemical wear is the basic wear mechanism of the diamond cutting tool
Molecular Dynamics Simulation of Macromolecules Using Graphics Processing Unit
Molecular dynamics (MD) simulation is a powerful computational tool to study
the behavior of macromolecular systems. But many simulations of this field are
limited in spatial or temporal scale by the available computational resource.
In recent years, graphics processing unit (GPU) provides unprecedented
computational power for scientific applications. Many MD algorithms suit with
the multithread nature of GPU. In this paper, MD algorithms for macromolecular
systems that run entirely on GPU are presented. Compared to the MD simulation
with free software GROMACS on a single CPU core, our codes achieve about 10
times speed-up on a single GPU. For validation, we have performed MD
simulations of polymer crystallization on GPU, and the results observed
perfectly agree with computations on CPU. Therefore, our single GPU codes have
already provided an inexpensive alternative for macromolecular simulations on
traditional CPU clusters and they can also be used as a basis to develop
parallel GPU programs to further speedup the computations.Comment: 21 pages, 16 figure
Molecular dynamics recipes for genome research
Molecular dynamics (MD) simulation allows one to predict the time evolution of a system of interacting particles. It is widely used in physics, chemistry and biology to address specific questions about the structural properties and dynamical mechanisms of model systems. MD earned a great success in genome research, as it proved to be beneficial in sorting pathogenic from neutral genomic mutations. Considering their computational requirements, simulations are commonly performed on HPC computing devices, which are generally expensive and hard to administer. However, variables like the software tool used for modeling and simulation or the size of the molecule under investigation might make one hardware type or configuration more advantageous than another or even make the commodity hardware definitely suitable for MD studies. This work aims to shed lights on this aspect
Wang-Landau molecular dynamics technique to search for low-energy conformational space of proteins
Multicanonical molecular dynamics (MD) is a powerful technique for sampling
conformations on rugged potential surfaces such as protein. However, it is
notoriously difficult to estimate the multicanonical temperature effectively.
Wang and Landau developed a convenient method for estimating the density of
states based on a multicanonical Monte Carlo method. In their method, the
density of states is calculated autonomously during a simulation. In this paper
we develop a set of techniques to effectively apply the Wang-Landau method to
MD simulations. In the multicanonical MD, the estimation of the derivative of
the density of states is critical. In order to estimate it accurately, we
devise two original improvements. First, the correction for the density of
states is made smooth by using the Gaussian distribution obtained by a short
canonical simulation. Second, an approximation is applied to the derivative,
which is based on the Gaussian distribution and the multiple weighted histogram
technique. A test of this method was performed with small polypeptides,
Met-enkephalin and Trp-cage, and it is demonstrated that Wang-Landau MD is
consistent with replica exchange MD but can sample much larger conformational
space.Comment: 8 pages, 7 figures, accepted for publication in Physical Review
Concurrent coupling of atomistic simulation and mesoscopic hydrodynamics for flows over soft multi-functional surfaces
We develop an efficient parallel multiscale method that bridges the atomistic
and mesoscale regimes, from nanometer to micron and beyond, via concurrent
coupling of atomistic simulation and mesoscopic dynamics. In particular, we
combine an all-atom molecular dynamics (MD) description for specific atomistic
details in the vicinity of the functional surface, with a dissipative particle
dynamics (DPD) approach that captures mesoscopic hydrodynamics in the domain
away from the functional surface. In order to achieve a seamless transition in
dynamic properties we endow the MD simulation with a DPD thermostat, which is
validated against experimental results by modeling water at different
temperatures. We then validate the MD-DPD coupling method for transient Couette
and Poiseuille flows, demonstrating that the concurrent MD-DPD coupling can
resolve accurately the continuum-based analytical solutions. Subsequently, we
simulate shear flows over polydimethylsiloxane (PDMS)-grafted surfaces (polymer
brushes) for various grafting densities, and investigate the slip flow as a
function of the shear stress. We verify that a "universal" power law exists for
the sliplength, in agreement with published results. Having validated the
MD-DPD coupling method, we simulate time-dependent flows past an endothelial
glycocalyx layer (EGL) in a microchannel. Coupled simulation results elucidate
the dynamics of EGL changing from an equilibrium state to a compressed state
under shear by aligning the molecular structures along the shear direction.
MD-DPD simulation results agree well with results of a single MD simulation,
but with the former more than two orders of magnitude faster than the latter
for system sizes above one micron.Comment: 11 pages, 12 figure
- …
