4 research outputs found

    Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT

    Get PDF
    AbstractThe maximum 2-satisfiability problem (MAX-2-SAT) is: given a Boolean formula in 2-CNF, find a truth assignment that satisfies the maximum possible number of its clauses. MAX-2-SAT is MAX-SNP-complete. Recently, this problem received much attention in the contexts of (polynomial-time) approximation algorithms and (exponential-time) exact algorithms. In this paper, we present an exact algorithm solving MAX-2-SAT in time poly(L)·2K/5, where K is the number of clauses and L is their total length. In fact, the running time is only poly(L)·2K2/5, where K2 is the number of clauses containing two literals. This bound implies the bound poly(L)·2L/10. Our results significantly improve previous bounds: poly(L)·2K/2.88 (J. Algorithms 36 (2000) 62–88) and poly(L)·2K/3.44 (implicit in Bansal and Raman (Proceedings of the 10th Annual Conference on Algorithms and Computation, ISAAC’99, Lecture Notes in Computer Science, Vol. 1741, Springer, Berlin, 1999, pp. 247–258.))As an application, we derive upper bounds for the (MAX-SNP-complete) maximum cut problem (MAX-CUT), showing that it can be solved in time poly(M)·2M/3, where M is the number of edges in the graph. This is of special interest for graphs with low vertex degree
    corecore