3,193 research outputs found

    DiffuStereo: High Quality Human Reconstruction via Diffusion-based Stereo Using Sparse Cameras

    Full text link
    We propose DiffuStereo, a novel system using only sparse cameras (8 in this work) for high-quality 3D human reconstruction. At its core is a novel diffusion-based stereo module, which introduces diffusion models, a type of powerful generative models, into the iterative stereo matching network. To this end, we design a new diffusion kernel and additional stereo constraints to facilitate stereo matching and depth estimation in the network. We further present a multi-level stereo network architecture to handle high-resolution (up to 4k) inputs without requiring unaffordable memory footprint. Given a set of sparse-view color images of a human, the proposed multi-level diffusion-based stereo network can produce highly accurate depth maps, which are then converted into a high-quality 3D human model through an efficient multi-view fusion strategy. Overall, our method enables automatic reconstruction of human models with quality on par to high-end dense-view camera rigs, and this is achieved using a much more light-weight hardware setup. Experiments show that our method outperforms state-of-the-art methods by a large margin both qualitatively and quantitatively.Comment: Accepted by ECCV202

    Deep Eyes: Binocular Depth-from-Focus on Focal Stack Pairs

    Full text link
    Human visual system relies on both binocular stereo cues and monocular focusness cues to gain effective 3D perception. In computer vision, the two problems are traditionally solved in separate tracks. In this paper, we present a unified learning-based technique that simultaneously uses both types of cues for depth inference. Specifically, we use a pair of focal stacks as input to emulate human perception. We first construct a comprehensive focal stack training dataset synthesized by depth-guided light field rendering. We then construct three individual networks: a Focus-Net to extract depth from a single focal stack, a EDoF-Net to obtain the extended depth of field (EDoF) image from the focal stack, and a Stereo-Net to conduct stereo matching. We show how to integrate them into a unified BDfF-Net to obtain high-quality depth maps. Comprehensive experiments show that our approach outperforms the state-of-the-art in both accuracy and speed and effectively emulates human vision systems

    Genetic stereo matching using complex conjugate wavelet pyramids

    Get PDF

    MRF Stereo Matching with Statistical Estimation of Parameters

    Get PDF
    For about the last ten years, stereo matching in computer vision has been treated as a combinatorial optimization problem. Assuming that the points in stereo images form a Markov Random Field (MRF), a variety of combinatorial optimization algorithms has been developed to optimize their underlying cost functions. In many of these algorithms, the MRF parameters of the cost functions have often been manually tuned or heuristically determined for achieving good performance results. Recently, several algorithms for statistical, hence, automatic estimation of the parameters have been published. Overall, these algorithms perform well in labeling, but they lack in performance for handling discontinuity in labeling along the surface borders. In this dissertation, we develop an algorithm for optimization of the cost function with automatic estimation of the MRF parameters – the data and smoothness parameters. Both the parameters are estimated statistically and applied in the cost function with support of adaptive neighborhood defined based on color similarity. With the proposed algorithm, discontinuity handling with higher consistency than of the existing algorithms is achieved along surface borders. The data parameters are pre-estimated from one of the stereo images by applying a hypothesis, called noise equivalence hypothesis, to eliminate interdependency between the estimations of the data and smoothness parameters. The smoothness parameters are estimated applying a combination of maximum likelihood and disparity gradient constraint, to eliminate nested inference for the estimation. The parameters for handling discontinuities in data and smoothness are defined statistically as well. We model cost functions to match the images symmetrically for improved matching performance and also to detect occlusions. Finally, we fill the occlusions in the disparity map by applying several existing and proposed algorithms and show that our best proposed segmentation based least squares algorithm performs better than the existing algorithms. We conduct experiments with the proposed algorithm on publicly available ground truth test datasets provided by the Middlebury College. Experiments show that results better than the existing algorithms’ are delivered by the proposed algorithm having the MRF parameters estimated automatically. In addition, applying the parameter estimation technique in existing stereo matching algorithm, we observe significant improvement in computational time

    Advanced Restoration Techniques for Images and Disparity Maps

    Get PDF
    With increasing popularity of digital cameras, the field of Computa- tional Photography emerges as one of the most demanding areas of research. In this thesis we study and develop novel priors and op- timization techniques to solve inverse problems, including disparity estimation and image restoration. The disparity map estimation method proposed in this thesis incor- porates multiple frames of a stereo video sequence to ensure temporal coherency. To enforce smoothness, we use spatio-temporal connec- tions between the pixels of the disparity map to constrain our solution. Apart from smoothness, we enforce a consistency constraint for the disparity assignments by using connections between the left and right views. These constraints are then formulated in a graphical model, which we solve using mean-field approximation. We use a filter-based mean-field optimization that perform efficiently by updating the dis- parity variables in parallel. The parallel updates scheme, however, is not guaranteed to converge to a stationary point. To compare and demonstrate the effectiveness of our approach, we developed a new optimization technique that uses sequential updates, which runs ef- ficiently and guarantees convergence. Our empirical results indicate that with proper initialization, we can employ the parallel update scheme and efficiently optimize our disparity maps without loss of quality. Our method ranks amongst the state of the art in common benchmarks, and significantly reduces the temporal flickering artifacts in the disparity maps. In the second part of this thesis, we address several image restora- tion problems such as image deblurring, demosaicing and super- resolution. We propose to use denoising autoencoders to learn an approximation of the true natural image distribution. We parametrize our denoisers using deep neural networks and show that they learn the gradient of the smoothed density of natural images. Based on this analysis, we propose a restoration technique that moves the so- lution towards the local extrema of this distribution by minimizing the difference between the input and output of our denoiser. Weii demonstrate the effectiveness of our approach using a single trained neural network in several restoration tasks such as deblurring and super-resolution. In a more general framework, we define a new Bayes formulation for the restoration problem, which leads to a more efficient and robust estimator. The proposed framework achieves state of the art performance in various restoration tasks such as deblurring and demosaicing, and also for more challenging tasks such as noise- and kernel-blind image deblurring. Keywords. disparity map estimation, stereo matching, mean-field optimization, graphical models, image processing, linear inverse prob- lems, image restoration, image deblurring, image denoising, single image super-resolution, image demosaicing, deep neural networks, denoising autoencoder

    Predictive World Models from Real-World Partial Observations

    Full text link
    Cognitive scientists believe adaptable intelligent agents like humans perform reasoning through learned causal mental simulations of agents and environments. The problem of learning such simulations is called predictive world modeling. Recently, reinforcement learning (RL) agents leveraging world models have achieved SOTA performance in game environments. However, understanding how to apply the world modeling approach in complex real-world environments relevant to mobile robots remains an open question. In this paper, we present a framework for learning a probabilistic predictive world model for real-world road environments. We implement the model using a hierarchical VAE (HVAE) capable of predicting a diverse set of fully observed plausible worlds from accumulated sensor observations. While prior HVAE methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only. We experimentally demonstrate accurate spatial structure prediction of deterministic regions achieving 96.21 IoU, and close the gap to perfect prediction by 62% for stochastic regions using the best prediction. By extending HVAEs to cases where complete ground truth states do not exist, we facilitate continual learning of spatial prediction as a step towards realizing explainable and comprehensive predictive world models for real-world mobile robotics applications. Code is available at https://github.com/robin-karlsson0/predictive-world-models.Comment: Accepted for IEEE MOST 202
    • …
    corecore