5,287 research outputs found

    Synaptic Wnt signaling—a contributor to major psychiatric disorders?

    Get PDF
    Wnt signaling is a key pathway that helps organize development of the nervous system. It influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, dysregulation of Wnt signaling could have any number of deleterious effects on neural development and thereby contribute in many different ways to the pathogenesis of neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorders, are coming to be understood as subtle dysregulations of nervous system development, particularly of synapse formation and maintenance. This review will therefore touch on the importance of Wnt signaling to neurodevelopment generally, while focusing on accumulating evidence for a synaptic role of Wnt signaling. These observations will be discussed in the context of current understanding of the neurodevelopmental bases of major psychiatric diseases, spotlighting schizophrenia, bipolar disorder, and autism spectrum disorder. In short, this review will focus on the potential role of synapse formation and maintenance in major psychiatric disorders and summarize evidence that defective Wnt signaling could contribute to their pathogenesis via effects on these late neural differentiation processes

    Patterns of Cilia Gene Dysregulations in Major Psychiatric Disorders

    Get PDF
    Primary cilia function as cells\u27 antennas to detect and transduce external stimuli and play crucial roles in cell signaling and communication. The vast majority of cilia genes that are causally linked with ciliopathies are also associated with neurological deficits, such as cognitive impairments. Yet, the roles of cilia dysfunctions in the pathogenesis of psychiatric disorders have not been studied. Our aim is to identify patterns of cilia gene dysregulation in the four major psychiatric disorders: schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BP), and major depressive disorder (MDD). For this purpose, we acquired differentially expressed genes (DEGs) from the largest and most recent publicly available databases. We found that 42%, 24%, 17%, and 15% of brain-expressed cilia genes were significantly differentially expressed in SCZ, ASD, BP, and MDD, respectively. Several genes exhibited cross-disorder overlap, suggesting that typical cilia signaling pathways\u27 dysfunctions determine susceptibility to more than one psychiatric disorder or may partially underlie their pathophysiology. Our study revealed that genes encoding proteins of almost all sub-cilia structural and functional compartments were dysregulated in the four psychiatric disorders. Strikingly, the genes of 75% of cilia GPCRs and 50% of the transition zone proteins were differentially expressed in SCZ. The present study is the first to draw associations between cilia and major psychiatric disorders, and is the first step toward understanding the role that cilia components play in their pathophysiological processes, which may lead to novel therapeutic targets for these disorders

    Childhood abuse v. neglect and risk for major psychiatric disorders

    Get PDF
    Background. Childhood maltreatment (CM) is a strong risk factor for psychiatric disorders but serves in its current definitions as an umbrella for various fundamentally different childhood experiences. As first step toward a more refined analysis of the impact of CM, our objective is to revisit the relation of abuse and neglect, major subtypes of CM, with symptoms across disorders.Methods. Three longitudinal studies of major depressive disorder (MDD, N = 1240), bipolar disorder (BD, N = 1339), and schizophrenia (SCZ, N = 577), each including controls (N = 881), were analyzed. Multivariate regression models were used to examine the relation between exposure to abuse, neglect, or their combination to the odds for MDD, BD, SCZ, and symptoms across disorders. Bidirectional Mendelian randomization (MR) was used to probe causality, using genetic instruments of abuse and neglect derived from UK Biobank data (N = 143 473).Results. Abuse was the stronger risk factor for SCZ (OR 3.51, 95% CI 2.17-5.67) and neglect for BD (OR 2.69, 95% CI 2.09-3.46). Combined CM was related to increased risk exceeding additive effects of abuse and neglect for MDD (RERI = 1.4) and BD (RERI = 1.1). Across disorders, abuse was associated with hallucinations (OR 2.16, 95% CI 1.55-3.01) and suicide attempts (OR 2.16, 95% CI 1.55-3.01) whereas neglect was associated with agitation (OR 1.24, 95% CI 1.02-1.51) and reduced need for sleep (OR 1.64, 95% CI 1.08-2.48). MR analyses were consistent with a bidirectional causal effect of abuse with SCZ (IVWforward = 0.13, 95% CI 0.01-0.24).Conclusions. Childhood abuse and neglect are associated with different risks to psychiatric symptoms and disorders. Unraveling the origin of these differences may advance understanding of disease etiology and ultimately facilitate development of improved personalized treatment strategies

    Role of the gut microbiome in three major psychiatric disorders

    Get PDF
    Major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia-spectrum disorders (SSD) are heterogeneous psychiatric disorders, which place significant burden on patient's well-being and global health. Disruptions in the gut-microbiome may play a role in these psychiatric disorders. This review presents current data on composition of the human gastrointestinal microbiota, and its interaction mechanisms in the gut-brain axis in MDD, BD and SSD. Diversity metrics and microbial relative abundance differed across studies. More studies reported inconsistent findings (n = 7) or no differences (n = 8) than studies who reported lower α-diversity in these psychiatric disorders (n = 5). The most consistent findings across studies were higher relative abundances of the genera Streptococcus, Lactobacillus, and Eggerthella and lower relative abundance of the butyrate producing Faecalibacterium in patients with psychiatric disorders. All three increased genera were associated with higher symptom severity. Confounders, such as medication use and life style have not been accounted for. So far, the results of probiotics trials have been inconsistent. Most traditional and widely used probiotics (consisting of Bifidobacterium spp. and Lactobacillus spp.) are safe, however, they do not correct potential microbiota disbalances in these disorders. Findings on prebiotics and faecal microbiota transplantation (FMT) are too limited to draw definitive conclusions. Disease-specific pro/prebiotic treatment or even FMT could be auspicious interventions for prevention and therapy for psychiatric disorders and should be investigated in future trials

    Patterns of Nonrandom Mating Within and Across 11 Major Psychiatric Disorders

    Get PDF
    Psychiatric disorders are heritable, polygenic traits, which often share risk alleles and for which nonrandom mating has been suggested. However, despite the potential etiological implications, the scale of nonrandom mating within and across major psychiatric conditions remains unclear

    DISC1 Pathway in Brain Development: Exploring Therapeutic Targets for Major Psychiatric Disorders

    Get PDF
    Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward to our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of disrupted in schizophrenia 1 (DISC1), a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions

    The miswired brain: making connections from neurodevelopment to psychopathology

    Get PDF
    Developmental neurobiologists have made great progress in elucidating the molecular mechanisms underlying nervous system development. There has been less focus, however, on the consequences when these processes go wrong. As the evidence increases that mutations in neurodevelopmental genes are associated with major psychiatric disorders, defining these consequences assumes paramount importance in elucidating pathogenic mechanisms

    A cross-disorder MR-pheWAS of 5 major psychiatric disorders in UK Biobank

    Get PDF
    Psychiatric disorders are highly heritable and associated with a wide variety of social adversity and physical health problems. Using genetic liability (rather than phenotypic measures of disease) as a proxy for psychiatric disease risk can be a useful alternative for research questions that would traditionally require large cohort studies with long-term follow up. Here we conducted a hypothesis-free phenome-wide association study in about 300,000 participants from the UK Biobank to examine associations of polygenic risk scores (PRS) for five psychiatric disorders (major depression (MDD), bipolar disorder (BP), schizophrenia (SCZ), attention-deficit/ hyperactivity disorder (ADHD) and autism spectrum disorder (ASD)) with 23,004 outcomes in UK Biobank, using the open-source PHESANT software package. There was evidence after multiple testing (p<2.55×10−06) for associations of PRSs with 226 outcomes, most of them attributed to associations of PRSMDD (n=120) with mental health factors and PRSADHD (n=77) with socio-demographic factors. Among others, we found strong evidence of associations between a 1 standard deviation increase in PRSADHD with 1.1 months younger age at first sexual intercourse [95% confidence interval [CI]: −1.26,−0.94]; PRSASD with 0.01% reduced lower erythrocyte distribution width [95%CI: −0.013,-0.007]; PRSSCZ with 0.98 odds of playing computer games [95%CI:0.976,0.989]; PRSMDD with a 0.11 points higher neuroticism score [95%CI:0.094,0.118] and PRSBP with 1.04 higher odds of having a university degree [95%CI:1.033,1.048]. We were able to show that genetic liabilities for five major psychiatric disorders associate with long-term aspects of adult life, including socio-demographic factors, mental and physical health. This is evident even in individuals from the general population who do not necessarily present with a psychiatric disorder diagnosis

    A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank

    Get PDF
    Psychiatric disorders are highly heritable and associated with a wide variety of social adversity and physical health problems. Using genetic liability (rather than phenotypic measures of disease) as a proxy for psychiatric disease risk can be a useful alternative for research questions that would traditionally require large cohort studies with long-term follow up. Here we conducted a hypothesis-free phenome-wide association study in about 300,000 participants from the UK Biobank to examine associations of polygenic risk scores (PRS) for five psychiatric disorders (major depression (MDD), bipolar disorder (BP), schizophrenia (SCZ), attention-deficit/ hyperactivity disorder (ADHD) and autism spectrum disorder (ASD)) with 23,004 outcomes in UK Biobank, using the open-source PHESANT software package. There was evidence after multiple testing (p<2.55×10−06) for associations of PRSs with 226 outcomes, most of them attributed to associations of PRSMDD (n=120) with mental health factors and PRSADHD (n=77) with socio-demographic factors. Among others, we found strong evidence of associations between a 1 standard deviation increase in PRSADHD with 1.1 months younger age at first sexual intercourse [95% confidence interval [CI]: −1.26,−0.94]; PRSASD with 0.01% reduced lower erythrocyte distribution width [95%CI: −0.013,-0.007]; PRSSCZ with 0.98 odds of playing computer games [95%CI:0.976,0.989]; PRSMDD with a 0.11 points higher neuroticism score [95%CI:0.094,0.118] and PRSBP with 1.04 higher odds of having a university degree [95%CI:1.033,1.048]. We were able to show that genetic liabilities for five major psychiatric disorders associate with long-term aspects of adult life, including socio-demographic factors, mental and physical health. This is evident even in individuals from the general population who do not necessarily present with a psychiatric disorder diagnosis
    corecore