3 research outputs found

    Untersuchungen zur Anomalieerkennung in automotive Steuergeräten durch verteilte Observer mit Fokus auf die Plausibilisierung von Kommunikationssignalen

    Get PDF
    Die zwei herausragenden automobilen Trends Konnektivität und hochautomatisiertes Fahren bieten viele Chancen, aber vor allem in ihrer Kombination auch Gefahren. Einerseits wird das Fahrzeug immer mehr mit seiner Außenwelt vernetzt, wodurch die Angriffsfläche für unautorisierten Zugriff deutlich steigt. Andererseits erhalten Steuergeräte die Kontrolle über sicherheitsrelevante Funktionen. Um das Risiko und die potentiellen Folgen eines erfolgreichen Angriffs möglichst gering zu halten, sollte eine Absicherung auf mehreren Ebenen erfolgen. Der Fokus dieser Arbeit liegt auf der innersten Absicherungsebene und dabei speziell auf der Überwachung von Fahrezug-interner Kommunikation. Hierfür empfehlen Wissenschaft und Industrie unter anderem den Einsatz von Intrusion Detection/Intrusion Prevention Systemen. Das erarbeitete Konzept greift diesen Vorschlag auf und berücksichtigt bei der Detaillierung die Steuergeräte-spezifischen Randbedingungen, wie beispielsweise die vergleichsweise statische Fahrzeugvernetzung und die limitierten Ressourcen. Dadurch entsteht ein hybrider Ansatz, bestehend aus klassischen Überwachungsregeln und selbstlernenden Algorithmen. Dieser ist nicht nur für die Fahrzeug-interne Kommunikation geeignet, sondern gleichermaßen für den Steuergeräte-internen Informationsaustausch, die Interaktion zwischen Applikations- und Basissoftware sowie die Überwachung von Laufzeit- und Speichereigenschaften. Das übergeordnete Ziel ist eine ganzheitliche Steuergeräte-Überwachung und damit eine verbesserte Absicherung im Sinne der Security. Abweichungen vom Sollverhalten - sogenannte Anomalien - werden jedoch unabhängig von deren Ursache erkannt, sei es ein mutwilliger Angriff oder eine Fehlfunktion. Daher kann dieser Ansatz auch zur Verbesserung der Safety beitragen, speziell wenn Applikationen und Algorithmen abzusichern sind, die sich während des Lebenszyklus eines Fahrzeugs verändern oder weiterentwickeln. Im zweiten Teil der Arbeit steht die Plausibilisierung von einzelnen Kommunikationssignalen im Vordergrund. Da deren möglicher Verlauf nicht formal beschrieben ist, kommen hierfür selbstlernende Verfahren zum Einsatz. Neben der Analyse und der Auswahl von grundsätzlich geeigneten Algorithmen ist die Leistungsbewertung eine zentrale Herausforderung. Die zu erkennenden Anomalien sind vielfältig und in der Regel sind nur Referenzdaten des Normalverhaltens in ausreichender Menge vorhanden. Aus diesem Grund werden unterschiedliche Anomalie-Typen definiert, welche die Anomaliesynthese in Normaldaten strukturieren und somit eine Evaluierung anhand der Erkennungsrate erlauben. Die Evaluierungsergebnisse zeigen, dass eine Signalplausibilisierung mittels künstlichen neuronalen Netzen (Autoencoder) vielversprechend ist. Zum Abschluss betrachtet die vorliegende Arbeit daher die Herausforderungen bei deren Realisierung auf automotive Steuergeräten und liefert entsprechende Kennzahlen für die benötigte Laufzeit und den Speicherverbrauch

    MACsec-Based Security for Automotive Ethernet Backbones

    No full text
    The increasing complexity of automotive electronics and the communication of cars with the external environment have led to extensive security issues. The car industry is moving towards the use of Ethernet backbones to improve the performance and reduce the complexity of in-car networks. In this paper, we propose a security solution for automotive Ethernet-based communications. We designed a hardware Media Access Control (MAC) layer based on the MAC Security Standard (MACsec) that considers the specific constraints of the automotive world in terms of latency, throughput and area. From a security point of view, our solution guarantees the confidentiality, integrity and authenticity of data. Furthermore, the system can be configured before synthesis to meet the security needs of the context in which the Ethernet communication is used. We synthesized our architecture on a low-power 28(Formula presented.)nm standard-cell CMOS technology, which is appropriate for automotive microcontrollers. The results show that our implementation is suitable for 100(Formula presented.)Mbps, 1(Formula presented.)Gbps and 10(Formula presented.)Gbps Ethernet speeds introducing less than 350(Formula presented.)ns of latency. The size of the circuit varies from 285 to 622 kgates depending on the required level of security and the required features
    corecore