20,095 research outputs found

    Role of the cerebellum in adaptation to delayed action effects

    Get PDF
    Actions are typically associated with sensory consequences. For example, knocking at a door results in predictable sounds. These self-initiated sensory stimuli are known to elicit smaller cortical responses compared to passively presented stimuli, e.g., early auditory evoked magnetic fields known as M100 and M200 components are attenuated. Current models implicate the cerebellum in the prediction of the sensory consequences of our actions. However, causal evidence is largely missing. In this study, we introduced a constant delay (of 100 ms) between actions and action-associated sounds, and we recorded magnetoencephalography (MEG) data as participants adapted to the delay. We found an increase in the attenuation of the M100 component over time for self-generated sounds, which indicates cortical adaptation to the introduced delay. In contrast, no change in M200 attenuation was found. Interestingly, disrupting cerebellar activity via transcranial magnetic stimulation (TMS) abolished the adaptation of M100 attenuation, while the M200 attenuation reverses to an M200 enhancement. Our results provide causal evidence for the involvement of the cerebellum in adapting to delayed action effects, and thus in the prediction of the sensory consequences of our actions

    Chandra X-Ray Point Sources, including Supernova 1979C, in the Spiral Galaxy M100

    Get PDF
    Six x-ray point sources, with luminosities of 4×10382×1039ergss14 \times 10^{38} - 2 \times 10^{39} \rm ergs s^{-1} in the 0.4--7 keV band, were detected in Chandra observations of the spiral galaxy M100. One source is identified with supernova SN 1979C and appears to have roughly constant x-ray flux for the period 16--20 years after the outburst. The x-ray spectrum is soft, as would be expected if the x-ray emission is due to the interaction of supernova ejecta with circumstellar matter. Most of the other sources are variable either within the Chandra observation or when compared to archival data. None are coincident with the peak of the radio emission at the nucleus. These sources have harder spectra than the supernova and are likely x-ray binaries. M100 has more bright x-ray sources than typical for spiral galaxies of its size. This is likely related to active star formation occurring in the galaxy.Comment: accepted by the Astrophysical Journal, 7 page

    Early occipital sensitivity to syntactic category is based on form typicality

    Get PDF
    Syntactic factors can rapidly affect behavioral and neural responses during language processing; however, the mechanisms that allow this rapid extraction of syntactically relevant information remain poorly understood. We addressed this issue using magnetoencephalography and found that an unexpected word category (e.g., “The recently princess . . . ”) elicits enhanced activity in visual cortex as early as 120 ms after exposure, and that this activity occurs as a function of the compatibility of a word’s form with the form properties associated with a predicted word category. Because no sensitivity to linguistic factors has been previously reported for words in isolation at this stage of visual analysis, we propose that predictions about upcoming syntactic categories are translated into form-based estimates, which are made available to sensory cortices. This finding may be a key component to elucidating the mechanisms that allow the extreme rapidity and efficiency of language comprehension

    Magnetization reversal and anomalous coercive field temperature dependence in MnAs epilayers grown on GaAs(100) and GaAs(111)B

    Full text link
    The magnetic properties of MnAs epilayers have been investigated for two different substrate orientations: GaAs(100) and GaAs(111). We have analyzed the magnetization reversal under magnetic field at low temperatures, determining the anisotropy of the films. The results, based on the shape of the magnetization loops, suggest a domain movement mechanism for both types of samples. The temperature dependence of the coercivity of the films has been also examined, displaying a generic anomalous reentrant behavior at T>>200 K. This feature is independent of the substrate orientation and films thickness and may be associated to the appearance of new pinning centers due to the nucleation of the β\beta-phase at high temperatures.Comment: 9 pages, 7 figure

    Dynamics of Inner Galactic Disks: The Striking Case of M100

    Full text link
    We investigate gas dynamics in the presence of a double inner Lindblad resonance within a barred disk galaxy. Using an example of a prominent spiral, M100, we reproduce the basic central morphology, including four dominant regions of star formation corresponding to the compression maxima in the gas. These active star forming sites delineate an inner boundary (so-called nuclear ring) of a rather broad oval detected in the near infrared. We find that inclusion of self-gravitational effects in the gas is necessary in order to understand its behavior in the vicinity of the resonances and its subsequent evolution. The self-gravity of the gas is also crucial to estimate the effect of a massive nuclear ring on periodic orbits in the stellar bar.Comment: 11 pages, postscript, compressed, uuencoded. Paper and 4 figures available at ftp://pa.uky.edu/shlosman/nobel or at http://www.pa.uky.edu/~shlosman/ . Invited talk at the Centennial Nobel Symposium on "Barred Galaxies and Circumnuclear Activity," A.Sandquist et al. (Eds.), Springer-Verlag, in pres

    Accretion and magnetic field morphology around Class 0 stage protostellar discs

    Full text link
    We analyse simulations of turbulent, magnetised molecular cloud cores focussing on the formation of Class 0 stage protostellar discs and the physical conditions in their surroundings. We show that for a wide range of initial conditions Keplerian discs are formed in the Class 0 stage already. In particular, we show that even subsonic turbulent motions reduce the magnetic braking efficiency sufficiently in order to allow rotationally supported discs to form. We therefore suggest that already during the Class 0 stage the fraction of Keplerian discs is significantly higher than 50%, consistent with recent observational trends but significantly higher than predictions based on simulations with misaligned magnetic fields, demonstrating the importance of turbulent motions for the formation of Keplerian discs. We show that the accretion of mass and angular momentum in the surroundings of protostellar discs occurs in a highly anisotropic manner, by means of a few narrow accretion channels. The magnetic field structure in the vicinity of the discs is highly disordered, revealing field reversals up to distances of 1000 AU. These findings demonstrate that as soon as even mild turbulent motions are included, the classical disc formation scenario of a coherently rotating environment and a well-ordered magnetic field breaks down. Hence, it is highly questionable to assess the magnetic braking efficiency based on non-turbulent collapse simulation. We strongly suggest that, in addition to the global magnetic field properties, the small-scale accretion flow and detailed magnetic field structure have to be considered in order to assess the likelihood of Keplerian discs to be present.Comment: 14 pages, 6 figures, accepted for publication in MNRAS, updated to final versio
    corecore