6 research outputs found

    Improved Wind and Rain Estimation Over the Ocean Using QuikSCAT

    Get PDF
    The QuikSCAT scatterometer has proved to be a valuable tool in measuring the near-surface wind vector over the ocean. In raining conditions the instrument effectiveness is diminished by rain contamination of the radar return. To compensate for rain effects, two alternative estimation techniques have been proposed, simultaneous wind-rain retrieval and rainonly retrieval, which are appropriate under certain conditions. This paper proposes and outlines a Bayes estimator selection technique whereby a best estimate is selected from the simultaneous wind-rain, the rain-only and the conventional wind-only estimates. In this paper the Bayes estimator selection technique is introduced with a quick overview of the application to QuikSCAT wind and rain estimation. Results are demonstrated at both conventional and high resolutions for a case study which indicate that wind and rain estimates after Bayes estimator selection are more consistent with measured rain and have reduced noise levels over those produced by any of the individual estimators

    Prior Selection for QuikSCAT Ultra-High Resolution Wind and Rain Retrieval

    Full text link

    Challenges to Satellite Sensors of Ocean Winds: Addressing Precipitation Effects

    Get PDF
    Measurements of global ocean surface winds made by orbiting satellite radars have provided valuable information to the oceanographic and meteorological communities since the launch of the Seasat in 1978, by the National Aeronautics and Space Administration (NASA). When Quick Scatterometer (QuikSCAT) was launched in 1999, it ushered in a new era of dual-polarized, pencil-beam, higher-resolution scatterometers for measuring the global ocean surface winds from space. A constant limitation on the full utilization of scatterometer-derived winds is the presence of isolated rain events, which affect about 7% of the observations. The vector wind sensors, the Ku-band scatterometers [NASA\u27s SeaWinds on the QuikSCAT and Midori-II platforms and Indian Space Research Organisation\u27s (ISRO\u27s) Ocean Satellite (Oceansat)-2], and the current C-band scatterometer [Advanced Wind Scatterometer (ASCAT), on the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)\u27s Meteorological Operation (MetOp) platform] all experience rain interference, but with different characteristics. Over this past decade, broad-based research studies have sought to better understand the physics of the rain interference problem, to search for methods to bypass the problem (using rain detection, flagging, and avoidance of affected areas), and to develop techniques to improve the quality of the derived wind vectors that are adversely affected by rain. This paper reviews the state of the art in rain flagging and rain correction and describes many of these approaches, methodologies, and summarizes the results

    M-ary Bayes Estimator Selection for QuikSCAT Simultaneous Wind and Rain Retrieval

    No full text

    Climate change 2013: the physical science basis

    Get PDF
    This report argues that it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century. This is an an unedited version of the Intergovernmental Panel on Climate Change\u27s Working Group I contribution to the Fifth Assessment Report following the release of its Summary for Policymakers on 27 September 2013.  The full Report is posted in the version distributed to governments on 7 June 2013 and accepted by Working Group I and the Panel on 27 September 2013. It includes the Technical Summary, 14 chapters and an Atlas of Global and Regional Climate Projections. Following copy-editing, layout, final checks for errors and adjustments for changes in the Summary for Policymakers, the full Report will be published online in January 2014 and in book form by Cambridge University Press a few months later
    corecore