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Abstract—The QuikSCAT scatterometer has proved to be a
valuable tool in measuring the near-surface wind vector over
the ocean. In raining conditions the instrument effectiveness
is diminished by rain contamination of the radar return. To
compensate for rain effects, two alternative estimation techniques
have been proposed, simultaneous wind-rain retrieval and rain-
only retrieval, which are appropriate under certain conditions.
This paper proposes and outlines a Bayes estimator selection
technique whereby a best estimate is selected from the simulta-
neous wind-rain, the rain-only and the conventional wind-only
estimates.

In this paper the Bayes estimator selection technique is
introduced with a quick overview of the application to QuikSCAT
wind and rain estimation. Results are demonstrated at both
conventional and high resolutions for a case study which indicate
that wind and rain estimates after Bayes estimator selection are
more consistent with measured rain and have reduced noise levels
over those produced by any of the individual estimators.

I. I NTRODUCTION

The QuikSCAT scatterometer was flown by NASA between
July of 1999 and November of 2009 and provided a valuable
global data set of ocean surface backscatter. The surface
backscatter observations are used to infer the near-surface
ocean wind-vector, however, the wind vector estimates may
be contaminated by rainy conditions which are also radar
observable. This paper introduces a method for reducing rain
contamination effects by forming several wind and rain esti-
mators. A Bayes estimator selection technique is introduced
to choose from among the several estimates a single estimate
which has the best performance. This paper can be viewed as
an introduction to and a demonstration of the Bayes estimator
selection technique as applied to QuikSCAT wind and rain
estimation. Although some of the details of the application
are omitted, the technique is outlined in great detail in several
papers which are forthcoming.

In this paper we motivate the estimator selection problem
in Sec. II and introduce the QuikSCAT scatterometer in Sec.
III. Bayes estimator selection is outlined in a general sense in
Sec. IV and Sec. V gives an overview of the steps required
to adapt Bayes estimator selection to the QuikSCAT wind and
rain estimation problem. Section VI evaluates a case study at
both conventional and ultra-high resolution after which Sec.
VII concludes.

II. PROBLEM FORMULATION

The QuikSCAT scatterometer was designed with the express
purpose of wind estimation over the ocean. The process by

which wind is estimated in the intended way is what we
term wind-only (WO) estimation in the following discussion
[1]. QuikSCAT wind-only estimates have good performance in
most wind conditions over the ocean; however, the estimates
can be degraded by rain, proximity to land and extreme
wind cases not included in the wind model. Here we discuss
only rain contamination as the other contamination effects are
discussed elsewhere. Rain contamination has been tradition-
ally dealt with using one of several rain flagging techniques
to identify rain contaminated winds [2]. Rain-flagged wind
estimates are typically discarded.

Simultaneous wind and rain (SWR) estimation was first
proposed as an alternative solution to rain-flagging of rain-
contaminated winds in wind-only retrieval [3]. SWR esti-
mation improves WO estimation by adjusting the wind-only
model to account for both wind and rain effects on the radar
backscatter [4], [5]. Replacing the wind model with the joint
wind-rain model and estimating both the wind and the rain
is what we term simultaneous wind and rain estimation [3],
[5]. However, it is interesting to note that for non-raining
cases SWR estimation often has degraded performance over
wind-only estimation. This is in large part due to the fact that
noise inherent in the backscatter measurements can sometimes
cause non-raining observations to resemble a raining case.
The phenomena where SWR estimation has a non-zero rain
estimate yet no rain is occurring can be quite common under
certain conditions.

SWR estimation in this paper is constrained to ignore
solutions with zero rain rates and zero wind-speeds. This
makes SWR estimation distinct from WO estimation and rain-
only estimation since they cannot retrieve the same solutions.
This is an appropriate constraint as the SWR model does
not model zero rain or zero wind, conditions which are
more appropriately addressed by the wind-only and rain-only
estimators.

For rain events with high rain rates and rain-dominated
backscatter [6] the wind and rain estimates for SWR estimation
may also be degraded. Essentially, for certain wind speed and
rain rate combinations the combined wind-rain model breaks
down making the SWR estimation process inaccurate. For
these rare high rain cases, rain-only estimation can provide
improved results.

Rain-only (RO) estimation [7] is a departure from the
intended purpose of the QuikSCAT scatterometer. In rain-only
estimation, the wind model is discarded entirely and instead
only the rain model is used, hence only a rain estimate is
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produced. By discarding the wind model entirely, rain-only
estimation makes the assumption that wind has essentially no
effect on the radar backscatter. In certain cases, the estimation
process is much improved by this assumption.

In summary, there are three different estimation techniques
which are appropriate under different conditions. If the esti-
mator is used outside of the intended conditions the estimator
performance is degraded. Since each estimator is appropriate
for specific conditions there is no single estimator which is
suitable for all conditions. Instead of choosing one estimator
and using it under all conditions we propose a Bayesian
estimator selection method whereby the three estimators are
compared and a single estimate is chosen from the various
estimates for each set of measurements.

III. B ACKGROUND

Before discussing estimator selection, an overview of the
QuikSCAT scatterometer and wind and rain estimation is pru-
dent. QuikSCAT measures the normalized radar backscatter,
σo, of the Earth’s surface at Ku-band. Measurements are made
using a rotating dual-polarization antenna which forms a swath
1800 km wide on the surface.

For a wind vectorw = [s, d] with wind speeds and
directiond, rain rater and a wind-rain vectorϑ = [w, r] the
backscatterσo can be modeled phenomenologically as [3], [4],
[8]

σo = αrσw + σe (1)

where σw is the backscatter from the ocean surface due
to wind, αr(r) is the attenuation factor of the ocean wind
backscatter due to atmospheric rain andσe(r) is the effective
rain backscatter from both the rain volume scattering and
attenuated surface scattering due to additional splashes and
waves. For wind and rain retrieval the phenomenological
model is calculated for each measurement using

Mr(ϑ, φ, ψ, p) = M(w, φ, ψ, p)αr(r, p) + σe(r, p) (2)

whereMr(ϑ, φ, ψ, p) is the combined wind and rain effect
model. HereM(w, φi, p) is the geophysical model function
(GMF) which gives the expected wind backscatter for a wind
vectorw given the antenna azimuth angleφ, incidence angle
ψ and polarizationp. The rain model termsα(r, p) and
σe(r, p) correspond to the phenomenological model of Eq.
1 with subscripts to indicate they are functions of rain rate
r and polarizationp. The rain attenuation and backscatter
models are assumed to be independent of wind velocity and
observation angle. Because the termsφ, ψ, andp are all fixed
by the measurement geometry, we simplify notation in the
following by dropping them and leaving only the wind and
rain dependence.

Wind and rain estimation is performed using the backscat-
ter model and the QuikSCAT measurement model. The
QuikSCAT measurement model assumes a Gaussian noise
distribution with meanMr(ϑ) and can be written

f(σo
i |ϑ) =

1√
2πς

exp
(
− 1

2ς2
(σo

i −Mr(ϑ))2
)

(3)

whereσo
i is the backscatter observation for theith measure-

ment, ϑ is the true wind-rain vector,Mr(ϑ) is the model
backscatter as a function of the true wind-rain vector andς2

is the model variance.
Maximum likelihood estimates for wind and rain can be

formed using the log-likelihood function of the measurement
model [9]. The maximum likelihood estimate is the wind-rain
vector which maximizes the likelihood function and can be
written

ϑ̂ = arg max
ϑ

∑

i

(
− log(

√
2πς)− 1

2ς2
(σo

i −Mr(ϑ))2
)

(4)
where the summation is over the vector of backscatter obser-
vations. The wind-only, rain-only and simultaneous wind-rain
estimators are each calculated in the same way and differ only
by the models used for the mean and variance. For wind-only
estimationMr(ϑ) = M(w), for rain onlyMr(ϑ) = σe(r)
and for simultaneous wind and rainMr(ϑ) is used as defined
in Eq. 2. The variance model for each estimator also changes
accordingly.

The motivation for each estimation technique used with
QuikSCAT can be readily understood from the simple phe-
nomenological model in Eq. 1. When rain is not present, i.e.
αr = 1 andσe = 0, σo is only a function ofσw and wind-only
estimation produces the best estimate. Similarly whenσw is
dominated byσe and αr, i.e. αr ¿ 1, rain-only estimation
is superior. When the wind and rain signals are of similar
magnitude it makes sense to estimate them jointly using
simultaneous wind-rain estimation. In essence, depending on
the true conditions, one of the estimators produces a better
estimate.

A subtle difference in the several estimator models is that
wind-only retrieval assumes that backscatter is unaffected
by rain. This is a stronger statement than assuming simply
that the rain is zero. Rather it is the assumption that the
backscatter is not affected by rain. Similarly rain-only retrieval
operates on the assumption that wind does not affect the
backscatter. The wind-only and rain-only retrieval models are
thus approximations to the true wind and rain model which
are only appropriate under certain conditions.

IV. M- ARY BAYES ESTIMATOR SELECTION

M-ary Bayes estimator selection is a modification of Bayes
decision theory which operates on the estimates produced by
M different estimators. To introduce the method we follow the
discussion and notation for Bayes decision theory outlined in
[10].

The object of the Bayes decision technique is to choose a
decision rule which minimizes the Bayes risk function given
a realizationx of the observation random variableX. For es-
timator selection, the observations are the variety of estimates
and the parameterθ corresponds to true conditions. Formally,
we represent the true conditions as a random variableθ with
realizationsϑ. Although in the previous sectionϑ referred
specifically to a wind vector, here it is a random variable
realization. The observations, or estimates, are realizationsxi

of the random variableX. The decision ruleφj(xi) is the rule
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where the estimatexj is chosen as the best estimate based on
the observation of the estimate being tested,xi.

We choose a loss functionL[ϑ, φj(xi)] which is the loss
resulting from choosing the estimatexj when ϑ is the true
condition. For our application we choose the loss function
written as

L[ϑ, φj(xi)] = C(ϑ,xj)(κδij + τ(1− δij)) (5)

where C(ϑ,xj) is a cost function, meaning the cost of
selectingxj when the decision rule isφj when ϑ is the
true condition. Because the decision ruleφj selects estimate
xj regardless of the estimate being tested, the cost of a
decision ruleφj only depends on the estimatexj . The term
(κδij +τ(1−δij)), whereκ andτ are scalar weighting factors
with κ+ τ = 1 andδij is a Kronecker delta function, allows
the loss function to vary depending on which estimate is being
tested. For example whenκ = 1 and τ = 0 the loss function
for the decision rule is zero when testing other estimators.
When κ = 0 and τ = 1 the loss is zero when testing
the selected estimator but non-zero when other estimators
are tested. Theκ and τ terms thus allow for the tuning of
the algorithm to meet desired specifications. Additionally, the
constraint thatκ + τ = 1 adds to the interpretation of the
loss function by constraining the loss function to be a convex
combination of the in-regime and out-of-regime error.

Using the established notation, the risk function for a
decision rule and true condition,R(ϑ, φj), is defined to be the
expected loss of using that decision rule under those conditions
and can be written

R(ϑ, φj) = EX(L[ϑ, φj(xi)])

=
M∑

i=0

L[ϑ, φj(xi)]fX|θ(xi|ϑ)

=
M∑

i=0

C(ϑ,xj)(κδij + τ(1− δij))fX|θ(xi|ϑ)

= C(ϑ,xj)(τ + (κ− τ)fX|θ(xj |ϑ)) (6)

whereEX denotes the expectation operator overX.
The Bayes risk,r(Fθ, φj), is the posterior expected risk

function and can be written

r(Fθ, φj) = Eθ(R(ϑ, φj))

=
∫

θ

R(ϑ, φj)fθ(ϑ)dϑ (7)

=
∫

θ

C(ϑ,xj)(τ + (κ− τ)fX|θ(xj |ϑ))fθ(ϑ)dϑ

The Bayes decision rule for estimator selection is the rule
which minimizes the Bayes risk. Such a rule can be written

k = arg min
j
r(Fθ, φj) (8)

= arg min
j

∫

θ

C(ϑ,xj)(τ + (κ− τ)fX|θ(xj |ϑ))fθ(ϑ)dϑ

= arg min
j

∫

θ

C(ϑ,xj)(1 + (
κ

τ
− 1)fX|θ(xj |ϑ))fθ(ϑ)dϑ

wherek indicates that the estimatorxk is best. Factoringτ
out of the inner portion of Eq. 8 shows that the decision rule

depends only on the ratio ofκ and τ . Although notationally
this is not a significant departure from traditional Bayes
decisions, the concept is far removed.

In Bayes decision theory decisions are based on realizations
of a random variable. Bayes estimator selection makes a
distinction from Bayes decisions because the random variable
realizations themselves are estimates made from other random
variable realizations. Essentially, the estimates themselves are
treated as realizations of a random variable where the estima-
tion process is the random variable.

In another light, Bayes estimator selection can be viewed
as the decision mechanism for functions of random variable
realizations whereas in the typical case the estimators are
viewed as functions of random variables. With this general-
ized perspective, the estimates themselves can be produced
with any estimation method, such as maximum likelihood or
maximum a posteriori or even any function of the realizations.
Additionally, Bayes estimator selection places no constraints
on the dimensionality of the estimators. It is the lack of
constraint on the dimensionality that makes this technique
particularly useful to QuikSCAT wind and rain estimation.

A. Cost Function

With the basic framework of Bayes estimator selection
established, the structure can be adapted to a specified per-
formance criteria to make decisions between the estimators
xi. To do so we must first specify the performance criteria or
cost functionC(ϑ,xi) which reflects the goal of choosing the
best estimator given the observations.

Although there are many cost functions which could be
appropriate for a particular problem, for this case we consider
the squared error of the observed estimatorxi given ϑ, the
true conditions.

C(ϑ,xi) = (ϑ− x̂i)2 (9)

where
(ϑ− x̂i)2 , (ϑ− x̂i)TN(ϑ− x̂i) (10)

is a shorthand notation for the normalized squared error. In
this case the matrixN is a diagonal matrix with normalization
coefficients to ensure the vector components are comparable.

Inserting this definition of the cost function into Eq. 8 results
in

r(Fθ, φj) =
∫

θ

(ϑ−x̂j)2(τ+(κ−τ)fX|θ(xj |ϑ))fθ(ϑ)dϑ (11)

Note that using this cost function withκ = 1 and τ = 0,
the Bayes risk for a given decision rule becomes the posterior
expected squared error of the estimator selected by the given
decision rule. Whenκ = 1 andτ = 1 the Bayes risk becomes
the prior expected squared error of the estimator. Thus the
weight termsκ andτ can be understood to control the relative
weights of the prior and posterior distributions in the Bayes
risk.

With this mechanism for estimator selection, what remains
is the determination of the conditional distributionfX|θ(xj |ϑ),
the priorfθ(ϑ), the normalization matrixN and the weighting
factorsκ andτ . Once these have been determined the selection
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of a best estimator, in a prior or posterior squared error sense,
is straightforward using Eqs. 11 and 8.

B. Limitations and Advantages

There are several advantages of adopting the Bayes estima-
tor selection technique. For instance, there is no requirement
on how the estimators be formed. The estimates can be
maximum a posteriori estimates, or MLE estimates as long
as the estimator performance prior is appropriately adjusted.
This advantage allows estimates to be formed with or with-
out priors. Further, the technique can be adapted to include
multiple priors based on factors not normally included in the
estimation process. For example, in the case of wind and rain
estimation such priors could include regional or topographic
features, wind models for hurricanes or other phenomena,
latitude-dependent rain models or other models which may
be appropriate to a local area. Such priors are not addressed
here as they are beyond the scope of this paper.

Before applying the Bayes estimator selection technique
to QuikSCAT wind and rain estimation, some discussion of
the technique’s limitations are in order. One limitation is that
in a general case the prior densities needed to compute the
posterior expected loss may be poorly defined or a good
model may not exist. However, an empirical prior may be
appropriate in cases where truth data can be obtained, thereby
ameliorating some of the difficulty. Another major limitation
is that the computation of the posterior expected loss can be
computationally intense, especially when it must be computed
for every estimator. Fortunately, the posterior expected loss
can be tabulated for every possible estimate and the real-time
computation can be significantly reduced by approximating the
Bayes risk calculation with a look-up table.

V. A PPLICATION TO WIND AND RAIN ESTIMATION

To illustrate the utility of the Bayes estimator selection
technique, in this section we apply the technique to wind
and rain estimation using the QuikSCAT scatterometer. This
section discusses each element of Eq. 8 with respect to
QuikSCAT wind and rain estimates so that Bayes estimator
selection can be utilized to choose between the wind-only,
simultaneous wind-rain and rain-only estimates.

A. Prior Distributions

Determining the prior densities used in calculating the
Bayes risk is a vital part of reliable estimator selection,
however we omit the details of such determination as they
are a part of forthcoming publications. Thus it suffices to
say that the prior density on wind and rainfθ(ϑ) can be
estimated empirically based on observed distributions of wind
and rain, while the conditional prior density of estimator
performancefx|θ(xj |ϑ) can be calculated empirically, based
on actual estimator performance. Although there are certainly
other ways in which the prior densities could be generated,
the priors we propose are simple to calculate and intuitively
represent the desired densities.

TABLE I
NORMALIZATION MATRIX VALUES

Parameter Maximum Value Normalization Coefficient
Wind Speed 50 m/s 1/502

Wind Direction 360 deg 0
Rain Rate 300 km-mm/hr 1/3002

B. Cost Function

The cost function is fundamental to the Bayes estimator
selection as it determines what criteria the ‘best’ estimate
corresponds to. For QuikSCAT wind and rain estimation the
ideal estimator is the one which yields estimates as close to the
true wind and rain as possible. While there are several different
cost functions which can satisfy this criteria we choose to
use a minimum squared error formulation. When the cost is
minimized by the estimator selection procedure the estimate
corresponds to a minimum-squared-error (MSE) estimate.

To account for the different wind speed and rain rate scales
we choose to use the normalized squared error cost function
defined in Eq. 10. The normalization matrixN is selected to
weight the components according to the selection criteria. For
wind and rain estimation we select values for the matrixN to
weight each component according to the maximum retrievable
value. Thus the normalization factors for wind speed and
rain rate in Table I are both the reciprocal of the maximum
retrievable value squared.

Additionally, although directional ambiguities exist [11] in
both wind-only and simultaneous wind and rain estimates,
the estimated wind speeds and rain rates for each estimator
are typically quite close in magnitude for all ambiguities.
Selecting a single ambiguity of the several possible solutions
is a complicated process. To generally avoid the complexity of
ambiguity selection when performing estimator selection we
choose to ignore the direction error. Thus the normalization
factor for wind direction in Table I is 0 implying that direction
information is ignored when selecting an estimator.

The cost function is also very dependent on the parametersκ
andτ . Finding an ideal combination is somewhat complicated
but we can use a simple empirical method to determine
a combination which functions well. One function of the
estimator selection method is to identify areas where rain is
occurring. With this in mind, we can use a probability of
error formulation to selectκ and τ . Since the objective is
to identify raining areas we define a correct detection to be
the selection of the RO or SWR estimator when the true rain
rate is greater than 2 km-mm/hr. We choose 2 km-mm/hr as
the threshold since it is difficult for QuikSCAT to detect rain
events with lower rain rates. As in any detection problem there
are two types of errors, missed detections and false alarms. As
a criteria for choosingκ andτ we choose minimum probability
of error.

Determining theκ and τ combination which minimizes
the probability of error consists of several steps. For each
combination, the Bayes risk is calculated for all wind and
rain vectors for each estimator. Estimator selection is then
performed on 1 year of co-located QuikSCAT and TRMM PR
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observations. The probability of false alarm and probability of
missed detection is calculated for the Bayes selected estimates.
Finally, we select theκ and τ combination which has the
minimum overall probability of error over the 1 year training
data. Although the steps taken to determine the bestκ and
τ require a training data set, the resulting Bayes risk table,
as calculated using Eq. 11, reliably identifies rain events and
estimates wind in non-raining conditions.

VI. RESULTS

To illustrate the typical performance of the individual es-
timators as well as the overall Bayes estimator selection we
consider a single case study from QuikSCAT rev 2882 on
January 7, 2000. As estimator selection can be adopted at
both conventional (25 km) and ultra-high resolution (2.5 km)
we compare and contrast results for both resolutions.

The WO estimates are shown in the upper left image of
Figs. 3 and 4. Comparing the WO estimates to the TRMM
PR measured rain rates (lower left image in the same figures)
illustrates the effects of rain contamination. Rain events cause
an increase in the wind estimates which may range as large
as 10-20 m/s. Note that for this case the true underlying wind
field varies between 5 and 10 m/s. In locations where TRMM
PR did not measure rain, the WO estimates are between 5 and
10 m/s corresponding to the true wind field.

The corresponding RO estimates are shown in the middle
left image in Figs. 3 and 4. Again comparing the RO estimates
to the TRMM PR measurements shows that the RO estimates
are spatially correlated with the TRMM PR measured rain
rates. However, the RO estimates where TRMM PR measured
no rain are biased high and in fact the RO estimator rarely
estimates a zero rain rate.

The SWR estimates overcome many of the problems asso-
ciated with the WO and RO estimators but have limitations of
their own. The SWR wind estimates are shown in the upper
middle image of Figs. 3 and 4 and the SWR rain estimates
are shown in the center image. The SWR wind estimates are
visually noisier than the WO estimates particularly in areas
where there is no rain. Interestingly, the opposite is true of
the SWR rain estimates. The SWR rain estimates correspond
fairly well with the TRMM PR measured rain estimates for
moderate rain rates, however for the most extreme rain events
there is no SWR rain estimate. In essence, this corresponds to
the case where the rain backscatter so completely dominates
the wind backscatter that a wind estimate is not possible.

The wind-rain estimates produced using the Bayes estimator
selection attempt to use the best features of each estimator. The
Bayes selected wind estimates are shown in the upper right
image in Figs. 3 and 4, the Bayes selected rain rates are shown
in the middle right image and the Bayes estimator selections
are shown in the lower right image. Note the visually improved
wind and rain performance. Rain estimates match the TRMM
PR measured rain rates quite well. The wind field is visually
smoother in non-raining conditions and the high wind speeds
due to rain contamination are no longer apparent. For reference
the ideal estimator selections, the selections which minimize
the normalized squared-error between the estimate and the true
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Fig. 1. Conventional resolution Bayes selected rain estimates as a function
of TRMM PR measured rain rates. Both axis show rain rate in dB km-mm/hr.
The red points correspond to SWR rain estimates, the black to RO estimates
and the green to WO estimates of zero-rain. The one-to-one line is shown
for comparison. Note that above a TRMM rain rate of 5dB the correlation is
quite good.
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Fig. 2. Ultra-high resolution Bayes selected rain estimates as a function of
TRMM PR measured rain rates. Both axis show rain rate in dB km-mm/hr.
The red points correspond to SWR rain estimates, the black to RO estimates
and the green to WO estimates of zero-rain. The one-to-one line is shown
for comparison. Note that above a TRMM rain rate of 5dB the correlation is
quite good for both the SWR and RO estimates.

values, are shown in the bottom image. Note that the Bayes
estimator selections and the ideal selections are noisy but are
often identical.

Although there is significant improvement gained by using
the Bayes selected estimates, some drawbacks remain. For the
highest rain rates, the RO estimator is selected and conse-
quently there is no wind estimate. Similarly, the wind estimates
corresponding to moderately high rain rates where the SWR
is selected have wind estimates which underestimate the true
wind speed. These wind under-estimates correspond to cases
where the rain attenuation of the wind signal is significant
enough to lower the wind estimates but not quite large enough
to make wind estimation impossible.

The visual correlation between the Bayes selected rain esti-
mates and the TRMM PR measurements is good but gives no
information about the point-wise accuracy of the estimates. To
evaluate the point-wise performance of the estimator selection
the estimates and the TRMM measurements are shown in the
scatter plots in Figs. 1 and 2. The correlation for QuikSCAT
rain estimates and TRMM PR rain measurements above -5 dB
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Fig. 3. Conventional resolution estimator results and Bayes estimator selection for a single case (QuikSCAT rev 2882, Jan. 7, 2000). The top row shows
wind speed estimates with overlaid direction vectors. From left to right:, wind-only, simultaneous wind-rain, Bayes selected wind. The middle row shows
rain estimates with relevant direction vectors overlaid. From left to right: rain-only, simultaneous wind-rain, Bayes selected rain. For comparison, the bottom
row shows the TRMM PR measured rain with the model wind vector field overlaid (bottom left), the ideal estimator selections (bottom center) and the
Bayes estimator selections (bottom right). For estimator selections 0 corresponds to a wind-only selection, 1 to a simultaneous wind-rain, and 2 to a rain-only
selection. Note that the Bayes selected estimates have visually less noise than the SWR estimates and have smooth wind fields in non-raining cases.

km-mm/hr is .76 for conventional resolution and .61 for ultra-
high resolution. The lower correlation of the UHR estimates
is in part due to limitations on the capability of QuikSCAT
rain estimation, but is largely due to differences in observation
times and the resolution enhancement of QuikSCAT data.

Comparing the conventional and ultra-high resolution re-
sults, it is apparent that although there is more noise in
the ultra-high resolution estimates, there is also more spatial
consistency in the wind and rain fields. This highlights the
advantages of wind and rain estimation at ultra-high resolution.
Although the conventional wind and rain estimates are good,
the small spatial scales of rain events makes the additional
spatial information found in the ultra-high resolution products
very useful.

VII. C ONCLUSIONS

Although we have omitted some of the details, we have
demonstrated that Bayes estimator selection is both a practical
and useful method for QuikSCAT wind and rain estimation. In
addition to reliably identifying rain events, the Bayes selected
estimates have lower squared error than those produced by any
of the individual estimators. This overall improvement sug-
gests that, if utilized properly, scatterometers like QuikSCAT
can be a valuable tool in aiding understanding of wind and
rain events on a global scale.
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