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Abstract—The QuikSCAT scatterometer has proved to be a which wind is estimated in the intended way is what we
valuable tool in measuring the near-surface wind vector over term wind-only (WO) estimation in the following discussion
the ocean. In raining conditions the instrument effectiveness [1]. QuikSCAT wind-only estimates have good performance in

is diminished by rain contamination of the radar return. To t wind diti th “h th timat
compensate for rain effects, two alternative estimation techniques mMOst wind conditions over the ocean, however, the estimates

have been proposed, simultaneous wind-rain retrieval and rain- €an be degraded by rain, proximity to land and extreme
only retrieval, which are appropriate under certain conditions. wind cases not included in the wind model. Here we discuss
This paper proposes and outlines a Bayes estimator selectiongnly rain contamination as the other contamination effects are
technique whereby a best estimate is selected from the simulta- gisessed elsewhere. Rain contamination has been tradition-
neous wind-rain, the rain-only and the conventional wind-only - . . . .
estimates. ally dealt with using one of several rain flagging techniques
In this paper the Bayes estimator selection technique is tO identify rain contaminated winds [2]. Rain-flagged wind
introduced with a quick overview of the application to QuikSCAT  estimates are typically discarded.
wind and rain estimation. Results are demonstrated at both Simultaneous wind and rain (SWR) estimation was first
conventional and high resolutions for a case study which indicate 5555ed as an alternative solution to rain-flagging of rain-
that wind and rain estimates after Bayes estimator selection are . . . . . .
more consistent with measured rain and have reduced noise |evelscont.am|.nated winds in v.vmd-_only fet”feva! 3]- SW_R esti-
over those produced by any of the individual estimators. mation improves WO estimation by adjusting the wind-only
model to account for both wind and rain effects on the radar
backscatter [4], [5]. Replacing the wind model with the joint
wind-rain model and estimating both the wind and the rain
The QUIkSCAT scatterometer was flown by NASA betweeg what we term simultaneous wind and rain estimation [3],
July of 1999 and November of 2009 and provided a valuabs]. However, it is interesting to note that for non-raining
global data set of ocean surface backscatter. The surfag@es SWR estimation often has degraded performance over
backscatter observations are used to infer the near'SUerﬁﬁd-orﬂy estimation. This is in |arge part due to the fact that
ocean wind-vector, however, the wind vector estimates mayise inherent in the backscatter measurements can sometimes
be contaminated by rainy conditions which are also radgiuse non-raining observations to resemble a raining case.
observable. This paper introduces a method for reducing rgiRe phenomena where SWR estimation has a non-zero rain

contamination effects by forming several wind and rain estgstimate yet no rain is occurring can be quite common under
mators. A Bayes estimator selection technique is introducggrtain conditions.

to choose from among the several estimates a single estimatg\R estimation in this paper is constrained to ignore

which has the best performance. This paper can be viewedsgfutions with zero rain rates and zero wind-speeds. This
an introduction to and a demonstration of the Bayes estimaifakes SWR estimation distinct from WO estimation and rain-
selection technique as applied to QUIkSCAT wind and ralhly estimation since they cannot retrieve the same solutions.
estimation. Although some of the details of the applicatiophis is an appropriate constraint as the SWR model does
are omitted, the teChnique is outlined in great detail in Seve%t model zero rain or zero wind, conditions which are

papers which are forthcoming. more appropriately addressed by the wind-only and rain-only
In this paper we motivate the estimator selection problegytimators.

in Sec. Il and introduce the QUlkSCAT scatterometer in SeC.For rain events with h|gh rain rates and rain-dominated

Ill. Bayes estimator selection is outlined in a general sensefgckscatter [6] the wind and rain estimates for SWR estimation

Sec. IV and Sec. V gives an overview of the steps requirgghy also be degraded. Essentially, for certain wind speed and

to adapt Bayes estimator selection to the QUikSCAT wind apglin rate combinations the combined wind-rain model breaks

rain estimation problem. Section VI evaluates a case studygivn making the SWR estimation process inaccurate. For

both conventional and ultra-high resolution after which Seﬂqese rare h|gh rain cases, rain_on|y estimation can provide
VII concludes. improved results.

Rain-only (RO) estimation [7] is a departure from the

Il. PROBLEM FORMULATION intended purpose of the QuikSCAT scatterometer. In rain-only

The QuikSCAT scatterometer was designed with the expresstimation, the wind model is discarded entirely and instead

purpose of wind estimation over the ocean. The process tmly the rain model is used, hence only a rain estimate is

I. INTRODUCTION
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produced. By discarding the wind model entirely, rain-onlwhereos? is the backscatter observation for tfta measure-
estimation makes the assumption that wind has essentiallyment, 9 is the true wind-rain vectorM,.(¢) is the model
effect on the radar backscatter. In certain cases, the estimatiaickscatter as a function of the true wind-rain vector ahd
process is much improved by this assumption. is the model variance.

In summary, there are three different estimation techniquesMaximum likelihood estimates for wind and rain can be
which are appropriate under different conditions. If the estiermed using the log-likelihood function of the measurement
mator is used outside of the intended conditions the estimatoodel [9]. The maximum likelihood estimate is the wind-rain
performance is degraded. Since each estimator is appropriagetor which maximizes the likelihood function and can be
for specific conditions there is no single estimator which isritten
suitable for all conditions. Instead of choosing one estimator 1
and using it under all conditions we propose a Bayesianﬁiargmgxz (10g(\/§§) - ?(Uf Mr(ﬂ))2)
estimator selection method whereby the three estimators are i 4)

co;npatred fand ahsmgtle fest|mate IS chtosen from the VarQYiere the summation is over the vector of backscatter obser-
estimates for each set of measurements. vations. The wind-only, rain-only and simultaneous wind-rain
estimators are each calculated in the same way and differ only
I1l. BACKGROUND by the models used for the mean and variance. For wind-only
. . . . . imation = for rain onl =
Before discussing estimator selection, an overview of tﬁaeSt atiol M (V) M(W)’ or rain o y.MT(ﬁ) 08(.7”)
. ; : ..~ .~ "and for simultaneous wind and raitt,.(99) is used as defined
QUIKSCAT scatterometer and wind and rain estimation is pru- . i
. . n Eq. 2. The variance model for each estimator also changes
dent. QuikSCAT measures the normalized radar backscatter .
o?, of the Earth’s surface at Ku-band. Measurements are ma%ctordmgly. . L . .
: The motivation for each estimation technique used with

using a rotating dual-polarization antenna which forms aswa(TuikSCAT can be readily understood from the simple phe-

1800 km wide on the surface. . . o :
For a wind vectorw — [s,d] with wind speeds and nomenological model in Eq. 1. When rain is not present, i.e.
’ a, = 1ando, = 0, ¢° is only a function ofr,, and wind-only

directiond, r;';un rater and a wind-rain VeCtOﬁ.: [w, r] the stimation produces the best estimate. Similarly whgnis

backscattes® can be modeled phenomenologically as [3], [4Eominated byo, anda,, i.e. a, < 1, rain-only estimation

(8] . is superior. When the wind and rain signals are of similar
0" =00y + 0c @) magnitude it makes sense to estimate them jointly using

where o, is the backscatter from the ocean surface du mutltaneousd.\;\_/md-ram es?Tst'on't.ln (?[ssence,ddepenmggtton
to wind, «,.(r) is the attenuation factor of the ocean win& € true condilions, one of the estimators produces a better

. . . . timate.
backscatter due to atmospheric rain is the effective €5 . . . .
rain backscatter from boFt)h the rainar\%gmme scattering andA subtle difference in the several estimator models is that

r&d-only retrieval assumes that backscatter is unaffected

attenuated surface scattering due to additional splashes A . . )
waves. For wind and rain retrieval the phenomenologic y ran. This is a stronger statement than assuming simply
t

at the rain is zero. Rather it is the assumption that the
backscatter is not affected by rain. Similarly rain-only retrieval
M (9, ¢,10,p) = M(w, b, 1, p)ar(r,p) + oe(r,p)  (2) Operates on the assumption that wind does not affect the
backscatter. The wind-only and rain-only retrieval models are

where M,.(J, ¢,,p) is the combined wind and rain effectthus approximations to the true wind and rain model which

model. HereM(w, ¢;, p) is the geophysical model functionare only appropriate under certain conditions.
(GMF) which gives the expected wind backscatter for a wind

vectorw givep the antenna az.imuth angle incidence angle IV. M-ARY BAYES ESTIMATOR SELECTION
v and polarizationp. The rain model termsx(r,p) and ) L .
o.(r,p) correspond to the phenomenological model of Eq, M-gry Bayes estl.mator selection is a moQ|f|cat|on of Bayes
1 with subscripts to indicate they are functions of rain ra&eusmn theory which operates on the estimates produced by
r and polarizationp. The rain attenuation and backscattep! different estimators. To introduce the method we follow the
models are assumed to be independent of wind velocity aw&cussion and notation for Bayes decision theory outlined in
observation angle. Because the ternsg), andp are all fixed 10]. . L . .
by the measurement geometry, we simplify notation in the 1€ object of the Bayes decision technique is to choose a
following by dropping them and leaving only the wind an&jemsmn rule which minimizes the Bayes risk function given
rain dependence a realizationx of the observation random variab}. For es-
Wind and rain estimation is performed using the backsc&lmator selection, the observations are the variety of estimates
ter model and the QuIkSCAT measurement model Tr?é‘d the parametél corresponds to true conditions. Formally,

QUuikSCAT measurement model assumes a Gaussian na}@e'repr.esent the true cqndltlons as a random variaieth
distribution with meanM,.(9) and can be written realizationsy. Although in the previous sectiodt referred
" specifically to a wind vector, here it is a random variable

1 1 M (9))? 3 realization. The observations, or estimates, are realizatgns
Vo P ~5a (0~ Me(9)) () of the random variabl&. The decision rules, (x;) is the rule

model is calculated for each measurement using

f(a7]9) =



where the estimatg; is chosen as the best estimate based alepends only on the ratio of and 7. Although notationally
the observation of the estimate being tested, this is not a significant departure from traditional Bayes
We choose a loss functioh[v, ¢;(x;)] which is the loss decisions, the concept is far removed.

resulting from choosing the estimatg when 4 is the true In Bayes decision theory decisions are based on realizations

condition. For our application we choose the loss functiosf a random variable. Bayes estimator selection makes a

written as distinction from Bayes decisions because the random variable

realizations themselves are estimates made from other random

L[9, ¢j(xi)] = C(9, %) (kdij + 7(1 — 6i;)) ©) Variable realizations. Essentially, the estimates themselves are

where C(¥9,x;) is a cost function, meaning the cost ofreated as realizations of a random variable where the estima-

selectingx; when the decision rule ig; when ¢ is the tion process is the random variable.

true condition. Because the decision rdle selects estimate In another light, Bayes estimator selection can be viewed

x; regardless of the estimate being tested, the cost ofaa the decision mechanism for functions of random variable

decision ruleg; only depends on the estimatg. The term realizations whereas in the typical case the estimators are

(kd;;+7(1—0,5)), wherex andr are scalar weighting factorsviewed as functions of random variables. With this general-

with x +7 = 1 andé;; is a Kronecker delta function, allowsized perspective, the estimates themselves can be produced

the loss function to vary depending on which estimate is beiM¢gth any estimation method, such as maximum likelihood or

tested. For example when= 1 andr = 0 the loss function maximum a posteriori or even any function of the realizations.

for the decision rule is zero when testing other estimator8dditionally, Bayes estimator selection places no constraints

When x = 0 and 7 = 1 the loss is zero when testingon the dimensionality of the estimators. It is the lack of

the selected estimator but non-zero when other estimatégstraint on the dimensionality that makes this technique

are tested. The: and 7 terms thus allow for the tuning of particularly useful to QUIkSCAT wind and rain estimation.

the algorithm to meet desired specifications. Additionally, the

constraint thats + 7 = 1 adds to the interpretation of thea Cost Function

loss function by constraining the loss function to be a convex

complnatlon of the In-regime aqd out-of regime error. established, the structure can be adapted to a specified per-
Using the established notation, the risk function for L _ .
. " . , ormance criteria to make decisions between the estimators
decision rule and true conditio® (¥, ¢;), is defined to be the ) : o
. e .. x;. To do so we must first specify the performance criteria or
expected loss of using that decision rule under those conditiort ; ; .
and can be written cost functionC (9, x;) which reflects the goal of choosing the

best estimator given the observations.

With the basic framework of Bayes estimator selection

R(W,¢;) = Ex(L[Y,¢;(x;)]) Although there are many cost functions which could be
M appropriate for a particular problem, for this case we consider
= ZL[ﬂ,gf)j(xi)]wa(xiW) the squared error of the observed estimatprgiven ¥, the
i=0 true conditions.
M . 12
= D0 O, x)) (R85 + (1= 6)) fxjo (1) C0,xi) = (9 =) ©)
=0 where
= CW,x;)(1 + (k= 7) fxjo(x;]0)) (6) (I —%)22 0 —%)TNW - %) (10)

where Ex denotes the expectation operator o¥er _is a shorthand notation for the normalized squared error. In
The Bayes risky(Fp, ¢;), is the posterior expected riskinis case the matridv is a diagonal matrix with normalization

function and can be written coefficients to ensure the vector components are comparable.

r(Fo, ;) = Ea(R(9,¢;)) Inserting this definition of the cost function into Eq. 8 results

in
| B0 fat0)a0 ™) .
0 r(Fo ;) = /0 (92,2 (r+ (k—7) fcia (5, 19)) fa (90 (1)

= C(9,x; — | 9)dd
/9 (9,3,)(7 + (& = 7) fxc1o (%1 19)) fo ) Note that using this cost function with = 1 andr = 0,
The Bayes decision rule for estimator selection is the ruiB® Bayes risk for a given decision rule becomes the posterior

which minimizes the Bayes risk. Such a rule can be writterfxpected squared error of the estimator selected by the given
decision rule. Whem: = 1 andr = 1 the Bayes risk becomes

k= argminr(Fy,¢;) (8) the prior expected squared error of the estimator. Thus the
J . .
weight terms< andr can be understood to control the relative
= arg min/O(ﬁ,xj)(T + (5 — 7) fx10(x;]9)) fo(9)d¥  weights of the prior and posterior distributions in the Bayes
i Je

risk.
= arg min/c(ﬂ’xj)(l + (f — 1) fxo(x;10)) fo(9)d9 ~ With this mechanism for estimator selection, what remains
7 Je T is the determination of the conditional distributigs(x;|?),

where k indicates that the estimatot; is best. Factoring- the prior fp(+9), the normalization matrixv and the weighting
out of the inner portion of Eg. 8 shows that the decision rufactorsx andr. Once these have been determined the selection



. : : : TABLE |
of a best estimator, in a prior or posterior squared error sense, NORMALIZATION MATRIX VALUES

is straightforward using Egs. 11 and 8.

Parameter Maximum Value  Normalization Coefficient
i Wind Speed 50 m/s 1/50
B. Limitations and Advantages Wind Direction 360 deg 0
There are several advantages of adopting the Bayes estima- Rain Rate 300 km-mm/hr 1/380

tor selection technique. For instance, there is no requirement
on how the estimators be formed. The estimates can be
maximum a posteriori estimates,_ or MLE estimates as Iorgg Cost Function
as the estimator performance prior is appropriately adjusted.
This advantage allows estimates to be formed with or with- The cost function is fundamental to the Bayes estimator
out priors_ Further7 the technique can be adapted to inc|u%%|ecti0n as it determines what criteria the ‘best’ estimate
multiple priors based on factors not normally included in thgorresponds to. For QUIkSCAT wind and rain estimation the
estimation process. For examp|e, in the case of wind and rmal estimator is the one which yleldS estimates as close to the
estimation such priors could include regiona] or topographie.le wind and rain as pOSSible. While there are several different
featureS, W|nd mode|s for hurricanes or other phenomemst fUnCtionS Wh|Ch can Sa'[iSfy th|S Criteria we Choose to
latitude-dependent rain models or other models which m&ge @ minimum squared error formulation. When the cost is
be appropriate to a local area. Such priors are not addres8¥fimized by the estimator selection procedure the estimate
here as they are beyond the scope of this paper. corresponds to a minimum-squared-error (MSE) estimate.
Before app|y|ng the Bayes estimator selection techniqueTO account for the different wind Speed and rain rate scales
to QuikSCAT wind and rain estimation, some discussion df€ choose to use the normalized squared error cost function
the technique’s limitations are in order. One limitation is thatefined in Eq. 10. The normalization matiX is selected to
in a genera| case the prior densities needed to Compute ‘ﬂ/‘%ght the Components according to the selection criteria. For
posterior expected loss may be poorly defined or a go@dnd and rain estimation we select values for the makiixo
model may not exist. However, an empirical prior may pweight each component according to the maximum retrievable
appropriate in cases where truth data can be obtained, theré@yse. Thus the normalization factors for wind speed and
ameliorating some of the difficulty. Another major limitationrain rate in Table | are both the reciprocal of the maximum
is that the computation of the posterior expected loss can Igéfievable value squared.
computationally intense, especially when it must be computedAdditionally, although directional ambiguities exist [11] in
for every estimator. Fortunately, the posterior expected loggth wind-only and simultaneous wind and rain estimates,
can be tabulated for every possible estimate and the real-tifie estimated wind speeds and rain rates for each estimator

computation can be significantly reduced by approximating tigée typically quite close in magnitude for all ambiguities.
Bayes risk calculation with a look-up table. Selecting a single ambiguity of the several possible solutions

is a complicated process. To generally avoid the complexity of
ambiguity selection when performing estimator selection we
choose to ignore the direction error. Thus the normalization
To illustrate the utility of the Bayes estimator selectiofiactor for wind direction in Table | is O implying that direction
technigue, in this section we apply the technique to windformation is ignored when selecting an estimator.
and rain estimation using the QuikSCAT scatterometer. ThisThe cost function is also very dependent on the parameters
section discusses each element of Eq. 8 with respectaodr. Finding an ideal combination is somewhat complicated
QUuIkSCAT wind and rain estimates so that Bayes estimatout we can use a simple empirical method to determine
selection can be utilized to choose between the wind-ony, combination which functions well. One function of the
simultaneous wind-rain and rain-only estimates. estimator selection method is to identify areas where rain is
occurring. With this in mind, we can use a probability of
error formulation to seleck and 7. Since the objective is
to identify raining areas we define a correct detection to be
Determining the prior densities used in calculating thdhe selection of the RO or SWR estimator when the true rain
Bayes risk is a vital part of reliable estimator selectiorfate is greater than 2 km-mm/hr. We choose 2 km-mm/hr as
however we omit the details of such determination as thélye threshold since it is difficult for QUIkSCAT to detect rain
are a part of forthcoming publications. Thus it suffices tevents with lower rain rates. As in any detection problem there
say that the prior density on wind and rajf(J) can be are two types of errors, missed detections and false alarms. As
estimated empirically based on observed distributions of wirgdcriteria for choosing andr we choose minimum probability
and rain, while the conditional prior density of estimatoof error.
performancefyq(z;|) can be calculated empirically, based Determining thex and 7 combination which minimizes
on actual estimator performance. Although there are certaithe probability of error consists of several steps. For each
other ways in which the prior densities could be generatethmbination, the Bayes risk is calculated for all wind and
the priors we propose are simple to calculate and intuitivelgiin vectors for each estimator. Estimator selection is then
represent the desired densities. performed on 1 year of co-located QuikSCAT and TRMM PR

V. APPLICATION TOWIND AND RAIN ESTIMATION

A. Prior Distributions



observations. The probability of false alarm and probability of | + SR
missed detection is calculated for the Bayes selected estimates —
Finally, we select thes and 7 combination which has the

minimum overall probability of error over the 1 year training *[ .
data. Although the steps taken to determine the beand g.| X gﬁf

T require a training data set, the resulting Bayes risk table, o sl
as calculated using Eq. 11, reliably identifies rain events add| | g AT

estimates wind in non-raining conditions. I
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VI. RESULTS

To illustrate the typical performance of the individual es- * ° ° Rt ain ey * ® *
timators as well as the overall Bayes estimator selection we

; ; ; ig. 1. Conventional resolution Bayes selected rain estimates as a function
consider a Smgle case StUdy from QUIkSCAT rev 2882 d;r;pTRMM PR measured rain rates. Both axis show rain rate in dB km-mm/hr.

January 7, 2000. As estimator selection can be adoptedtgd red points correspond to SWR rain estimates, the black to RO estimates
both conventional (25 km) and ultra-high resolution (2.5 knmgnd the green to WO estimates of zero-rain. The one-to-one line is shown

we compare and contrast results for both resolutions. for comparison. Note that above a TRMM rain rate of 5dB the correlation is
The WO estimates are shown in the upper left image qo'flte good.
Figs. 3 and 4. Comparing the WO estimates to the TRMM,,_
PR measured rain rates (lower left image in the same figures
illustrates the effects of rain contamination. Rain events cause
an increase in the wind estimates which may range as largg
as 10-20 m/s. Note that for this case the true underlying wind
field varies between 5 and 10 m/s. In locations where TRMIgl=
PR did not measure rain, the WO estimates are between 5 @n
10 m/s corresponding to the true wind field. ;
The corresponding RO estimates are shown in the middle’ :
left image in Figs. 3 and 4. Again comparing the RO estimates g
to the TRMM PR measurements shows that the RO estimatesi&s.

rates. However, the RO estimates where TRMM PR measured
no _rain are biased .high and in fact the RO estimator rarglyy o yitra-high resolution Bayes selected rain estimates as a function of
estimates a zero rain rate. TRMM PR measured rain rates. Both axis show rain rate in dB km-mm/hr.
The SWR estimates overcome many of the problems asgag red points corresponq to SWR rain esti_mates, the black to RO _estimates
. . . L. apd the green to WO estimates of zero-rain. The one-to-one line is shown
ciated with the WO and RO estimators but have limitations @ comparison. Note that above a TRMM rain rate of 5dB the correlation is
their own. The SWR wind estimates are shown in the uppeyite good for both the SWR and RO estimates.
middle image of Figs. 3 and 4 and the SWR rain estimates
are shown in the center image. The SWR wind estimates are
visually noisier than the WO estimates particularly in areaglues, are shown in the bottom image. Note that the Bayes
where there is no rain. Interestingly, the opposite is true estimator selections and the ideal selections are noisy but are
the SWR rain estimates. The SWR rain estimates correspa@ftén identical.
fairly well with the TRMM PR measured rain estimates for Although there is significant improvement gained by using
moderate rain rates, however for the most extreme rain evetiite Bayes selected estimates, some drawbacks remain. For the
there is no SWR rain estimate. In essence, this correspondsighest rain rates, the RO estimator is selected and conse-
the case where the rain backscatter so completely dominagegntly there is no wind estimate. Similarly, the wind estimates
the wind backscatter that a wind estimate is not possible. corresponding to moderately high rain rates where the SWR
The wind-rain estimates produced using the Bayes estimai®iselected have wind estimates which underestimate the true
selection attempt to use the best features of each estimator. Wied speed. These wind under-estimates correspond to cases
Bayes selected wind estimates are shown in the upper rigitere the rain attenuation of the wind signal is significant
image in Figs. 3 and 4, the Bayes selected rain rates are sh@mough to lower the wind estimates but not quite large enough
in the middle right image and the Bayes estimator selectioitsmake wind estimation impossible.
are shown in the lower right image. Note the visually improved The visual correlation between the Bayes selected rain esti-
wind and rain performance. Rain estimates match the TRMiMates and the TRMM PR measurements is good but gives no
PR measured rain rates quite well. The wind field is visualipformation about the point-wise accuracy of the estimates. To
smoother in non-raining conditions and the high wind speedsaluate the point-wise performance of the estimator selection
due to rain contamination are no longer apparent. For referernie estimates and the TRMM measurements are shown in the
the ideal estimator selections, the selections which minimigeatter plots in Figs. 1 and 2. The correlation for QUikSCAT
the normalized squared-error between the estimate and the taia estimates and TRMM PR rain measurements above -5 dB
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Fig. 3. Conventional resolution estimator results and Bayes estimator selection for a single case (QuikSCAT rev 2882, Jan. 7, 2000). The top row shows
wind speed estimates with overlaid direction vectors. From left to right:, wind-only, simultaneous wind-rain, Bayes selected wind. The middle row shows
rain estimates with relevant direction vectors overlaid. From left to right: rain-only, simultaneous wind-rain, Bayes selected rain. For comparison, the bottom
row shows the TRMM PR measured rain with the model wind vector field overlaid (bottom left), the ideal estimator selections (bottom center) and the
Bayes estimator selections (bottom right). For estimator selections O corresponds to a wind-only selection, 1 to a simultaneous wind-rain, and 2 to a rain-only
selection. Note that the Bayes selected estimates have visually less noise than the SWR estimates and have smooth wind fields in non-raining cases.

km-mm/hr is .76 for conventional resolution and .61 for ultra- VII. CONCLUSIONS

high resolution. The lower correlation of the UHR estimates Although we have omitted some of the details, we have

is in part due to limitations on the capability of QUIKSCATyemonstrated that Bayes estimator selection is both a practical

rain estimation, but is largely due to differences in observatigfhg yseful method for QuikSCAT wind and rain estimation. In

times and the resolution enhancement of QUIkSCAT data. 4qgdition to reliably identifying rain events, the Bayes selected

estimates have lower squared error than those produced by any

Comparing the conventional and ultra-high resolution r&f the individual estimators. This overall improvement sug-

sults, it is apparent that although there is more noise @gsts that, if utilized pro_perl_y,_scatterometers_ like Qu!kSCAT

the ultra-high resolution estimates, there is also more spaf@hn be a valuable tool in aiding understanding of wind and

consistency in the wind and rain fields. This highlights thEin events on a global scale.

advantages of wind and rain estimation at ultra-high resolution.
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