45 research outputs found

    Nonlinear Feedback Control of Axisymmetric Aerial Vehicles

    Get PDF
    We investigate the use of simple aerodynamic models for the feedback control of aerial vehicles with large flight envelopes. Thrust-propelled vehicles with a body shape symmetric with respect to the thrust axis are considered. Upon a condition on the aerodynamic characteristics of the vehicle, we show that the equilibrium orientation can be explicitly determined as a function of the desired flight velocity. This allows for the adaptation of previously proposed control design approaches based on the thrust direction control paradigm. Simulation results conducted by using measured aerodynamic characteristics of quasi-axisymmetric bodies illustrate the soundness of the proposed approach

    Control of VTOL Vehicles with Thrust-direction Tilting

    Full text link
    An approach to the control of a VTOL vehicle equipped with complementary thrust-direction tilting capabilities that nominally yield full actuation of the vehicle's position and attitude is developed. The particularity and difficulty of the control problem are epitomized by the existence of a maximal thrust-tilting angle which forbids complete and decoupled control of the vehicle's position and attitude in all situations. This problem is here addressed via the formalism of primary and secondary objectives and by extending a solution previously derived in the fixed thrust-direction case. The proposed control design is also illustrated by simulation results involving a quadrotor UAV with all propellers axes pointing in the same monitored tilted direction

    Adaptive nonlinear hierarchical control of a quad tilt-wing UAV

    Get PDF
    Position control of a quad tilt-wing UAV via a nonlinear hierarchical adaptive control approach is presented. The hierarchy consists of two levels. In the upper level, a model reference adaptive controller creates virtual control commands so as to make the UAV follow a given desired trajectory. The virtual control inputs are then converted to desired attitude angle references which are fed to the lower level attitude controller. Lower level controller is a nonlinear adaptive controller. The overall controller is developed for the full nonlinear dynamics of the tilt-wing UAV and thus no linearization is required. In addition, since the approach is adaptive, uncertainties in the UAV dynamics can be handled. Performance of the controller is presented via simulation results

    Robust Controller Design for an Autonomous Underwater Vehicle

    Get PDF
    Worldwide there has been a surge of interest in Autonomous Underwater Vehicles (AUV). The ability to operate without human intervention is what makes this technology so appealing. On the other hand, the absence of the human narrows the AUV operation to its control system, computing, and sensing capabilities. Therefore, devising a robust control is mandatory to allow the feasibility of the AUV. Motivated by this fact, this thesis aims to present, discuss and evaluate two linear control solutions being proposed for an AUV developed by a consortium led by CEiiA. To allow the controller design, the dynamic model of this vehicle and respective considerations are firstly addressed. Since the purpose is to enable the vehicle’s operation, devising suitable guidance laws becomes essential. A simple waypoint following and station keeping algorithm, and a path following algorithms are presented. To devise the controllers, a linear version of the dynamic model is derived considering a single operational point. Then, through the decoupling of the linear system into three lightly interactive subsystems, four Proportional Integral Derivative controllers (PIDs) are devised for each Degree Of Freedom (DOF) of the vehicle. A Linear Quadratic Regulator (LQR) design, based on the decoupling of the linear model into longitudinal and lateral subsystems is also devised. To allocate the controller output throughout the actuators, a control allocation law is devised, which improves maneuverability of the vehicle. The results present a solid performance for both control methods, however, in this work, LQR proved to be slightly faster than PID.É visível, a nível mundial, um aumento considerável do interesse em Veículos Autónomos Subaquáticos (Autonomous Underwater Vehicles - AUV). O que torna esta tecnologia tão atraente é a capacidade de operar sem intervenção humana. Contudo, a ausência do ser humano restringe a operação do AUV ao seu sistema de controlo, computação e capacidades de detecção. Desta forma, conceber um controlo robusto é obrigatório para viabilizar o AUV. Motivado por este facto, esta tese tem como objetivo apresentar, discutir e avaliar duas soluções de controlo linear, a propor a um AUV desenvolvido por um consórcio liderado pelo CEiiA. Para que o projeto do controlador seja possível, o modelo dinâmico deste veículo e respectivas considerações são primeiramente abordados. Com a finalidade de possibilitar a operação do veículo, torna-se essencial a elaboração de leis de guidance adequadas. Para este efeito são apresentados algorítmos de Waypoint following e Station keeping, e de path following. Para a projeção dos controladores é derivada uma versão linear do modelo dinâmico, considerando um único ponto operacional. Através da separação do modelo linear em três subsistemas são criados quatro controladores Proporcional Integral Derivativo (PID) para cada grau de liberdade (Degree Of Freedom - DOF) do veículo. É também projetado um Regulador Linear Quadrático (LQR), baseado na separação do modelo linear em dois subsistemas, longitudinal e lateral. É ainda apresentada uma lei de alocação de controlo para distribuir o sinal de saída dos controladores pelos diferentes atuadores. Esta provou melhorar a manobrabilidade do veículo. Os resultados finais apresentam um desempenho sólido para ambos os métodos de controlo. No entanto, neste trabalho, o LQR provou ser mais rápido do que o PID

    Underwater Robots Part II: Existing Solutions and Open Issues

    Get PDF
    National audienceThis paper constitutes the second part of a general overview of underwater robotics. The first part is titled: Underwater Robots Part I: current systems and problem pose. The works referenced as (Name*, year) have been already cited on the first part of the paper, and the details of these references can be found in the section 7 of the paper titled Underwater Robots Part I: current systems and problem pose. The mathematical notation used in this paper is defined in section 4 of the paper Underwater Robots Part I: current systems and problem pose

    Commande référencée vision pour drones à décollages et atterrissages verticaux

    Get PDF
    La miniaturisation des calculateurs a permis le développement des drones, engins volants capable de se déplacer de façon autonome et de rendre des services, comme se rendre clans des lieux peu accessibles ou remplacer l'homme dans des missions pénibles. Un enjeu essentiel dans ce cadre est celui de l'information qu'ils doivent utiliser pour se déplacer, et donc des capteurs à exploiter pour obtenir cette information. Or nombre de ces capteurs présentent des inconvénients (risques de brouillage ou de masquage en particulier). L'utilisation d'une caméra vidéo dans ce contexte offre une perspective intéressante. L'objet de cette thèse était l'étude de l'utilisation d'une telle caméra dans un contexte capteur minimaliste: essentiellement l'utilisation des données visuelles et inertielles. Elle a porté sur le développement de lois de commande offrant au système ainsi bouclé des propriétés de stabilité et de robustesse. En particulier, une des difficultés majeures abordées vient de la connaissance très limitée de l'environnement dans lequel le drone évolue. La thèse a tout d'abord étudié le problème de stabilisation du drone sous l'hypothèse de petits déplacements (hypothèse de linéarité). Dans un second temps, on a montré comment relâcher l'hypothèse de petits déplacements via la synthèse de commandes non linéaires. Le cas du suivi de trajectoire a ensuite été considéré, en s'appuyant sur la définition d'un cadre générique de mesure d'erreur de position par rapport à un point de référence inconnu. Enfin, la validation expérimentale de ces résultats a été entamée pendant la thèse, et a permis de valider bon nombre d'étapes et de défis associés à leur mise en œuvre en conditions réelles. La thèse se conclut par des perspectives pour poursuivre les travaux.The computers miniaturization has paved the way for the conception of Unmanned Aerial vehicles - "UAVs"- that is: flying vehicles embedding computers to make them partially or fully automated for such missions as e.g. cluttered environments exploration or replacement of humanly piloted vehicles for hazardous or painful missions. A key challenge for the design of such vehicles is that of the information they need to find in order to move, and, thus, the sensors to be used in order to get such information. A number of such sensors have flaws (e.g. the risk of being jammed). In this context, the use of a videocamera offers interesting prospectives. The goal of this PhD work was to study the use of such a videocamera in a minimal sensors setting: essentially the use of visual and inertial data. The work has been focused on the development of control laws offering the closed loop system stability and robustness properties. In particular, one of the major difficulties we faced came from the limited knowledge of the UAV environment. First we have studied this question under a small displacements assumption (linearity assumption). A control law has been defined, which took performance criteria into account. Second, we have showed how the small displacements assumption could be given up through nonlinear control design. The case of a trajectory following has then been considered, with the use of a generic error vector modelling with respect to an unknown reference point. Finally, an experimental validation of this work has been started and helped validate a number of steps and challenges associated to real conditions experiments. The work was concluded with prospectives for future work.TOULOUSE-ISAE (315552318) / SudocSudocFranceF

    Predictive control strategies por unmanned aerial vehicles in cargo transportation tasks

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2016.O desenvolvimento de veículos aéreos não tripulados (VANTs) vem despertando um grande interesse tanto no meio acadêmico quanto na indústria nas últimas décadas. Muitos campos da robótica e da teoria de controle vem sendo explorados visando melhorar o desempenho destes sistemas. Existem vários cenários onde estas aeronaves são utilizadas, tais como monitoramento de ambientes, agricultura de precisão, busca e resgate, entre outras. Dentre as diferentes aplicações destas aeronaves temos o transporte de carga suspensa por cabo, o qual tem promovido várias pesquisas relacionadas com transporte de alimentos, medicamentos e suprimentos em geral, para zonas de risco. Neste sentido, este trabalho tem como foco o uso de VANTs em tarefas de transporte de carga, considerando perturbações externas e incertezas paramétricas. A aeronave utilizada é um birotor na configuração Tilt-rotor que carrega uma carga suspensa. Um Tilt-rotor é um veículo movimentado por dois rotores inclináveis, os quais geram e direcionam forças de impulso para sustentar a aeronave. Neste estudo, é importante que a aeronave seja capaz de seguir uma trajetória predefinida enquanto estabiliza a carga suspensa mesmo quando afetada por perturbações externas ou incertezas paramétricas. Além disso, um modelo não linear multicorpo é obtido via formulação Euler-Lagrange para o VANT Tilt-rotor considerando a carga suspensa. Neste modelo foi considerado que a aeronave é composta por quatro corpos rígidos e tem dez graus de liberdade. O problema de controle é solucionado com um controlador preditivo (MPC) incremental e um não incremental, baseados no modelo linear do erro do sistema, o qual é linearizado em torno a uma trajetória genérica. Além disso, os MPCs consideram custo terminal, com o objetivo de garantir estabilidade e por consequência reduzir o horizonte de predição. Devido ao fato do sistema linear ser variante no tempo (LVT), o custo terminal é calculado mediante desigualdades matriciais lineares (LMI). Por outro lado, restrições são impostas na formulação do MPC, relacionadas com as limitações físicas dos atuadores e considerando que o VANT está confinado numa área específica. Finalmente, simulações foram realizadas para avaliar o desempenho dos controladores propostos, considerando perturbações constantes em diferentes instantes de tempo, e levando em conta incertezas paramétricas.Abstract : The development of unmanned aerial vehicles (UAVs) has arousedgreat interest in both academia and industry in the recent decades.Many aereas of robotics and control theory have been exploited toimprove the performance of these systems. There are several scenarioswhere these aerial vehicles are used, like monitoring environment,precision agriculture, construction, search and rescue. Transportationof cable-suspended loads with UAVs is another application. This haspromoted research related to load transportation of food, medicine,and supplies in general for unsafe areas. This research is focused onthis topic, where it is necessary that the UAV follows a predenedtrajectory while stabilizing the suspended load, even if it is aectedby external disturbances. In this dissertation, two model predictivecontrollers (MPCs) are used to solve the path tracking problem of asmall scale Tilt-rotor Unmanned Aerial Vehicle (UAV) while carryinga suspended load. A Tilt-rotor is a vehicle lifted and propelled bytwo tiltable rotors, in order to control the direction of thrust forces.In the present study, it is important that the aircraft able to follow apredened trajectory while maintaining the suspended load stable evenin the presence of external disturbances and parametric uncertainties.Moreover, a rigorous multibody non-linear dynamic model is obtainedvia Euler-Lagrange formulation for the Tilt-rotor UAV with suspendedload, assuming four rigid bodies and ten degrees of freedom (DOF)of the vehicle. The control problem is solved with incremental andnon-incremental model predictive controllers, based on the linear errormodel of the system, which is linearized around a generic trajectory.Furthermore, the MPCs consider a terminal cost in order to ensurestability, allowing the prediction horizon reduction. As the linear modelis a linear time-varying (LTV) system, the terminal cost is calculatedvia linear matrix inequalities (LMI). In addition, some constraintsare imposed on the formulation, related to physical limitations of theactuators and assuming that the aircraft is conned to a particulararea. Finally, numerical simulations are performed in order to evaluatethe controllers, considering constant disturbances at dierent instantsof time, and modeling errors

    Suspended Load Path Tracking Control Strategy Using a Tilt-Rotor UAV

    Get PDF

    Control of VTOL Vehicles with Thrust-Tilting Augmentation

    Get PDF
    International audienceAn approach to the control of a VTOL vehicle equipped with complementary thrust-tilting capabilities that nominally yield full actuation of the vehicle's position and attitude is developed. The particularity and difficulty of the control problem are epitomized by the existence of a maximum tilting angle which forbids complete and decoupled control of the vehicle's position and attitude in all situations. This problem is here addressed via the formalism of primary and secondary objectives and by extending a solution previously derived in the fixed thrust-direction case. The proposed control design is also illustrated by simulation results involving a quadrotor UAV with all propellers axes pointing in the same monitored tilted direction
    corecore