1,677 research outputs found

    Input-Output-to-State Stability

    Full text link
    This work explores Lyapunov characterizations of the input-output-to-state stability (IOSS) property for nonlinear systems. The notion of IOSS is a natural generalization of the standard zero-detectability property used in the linear case. The main contribution of this work is to establish a complete equivalence between the input-output-to-state stability property and the existence of a certain type of smooth Lyapunov function. As corollaries, one shows the existence of ``norm-estimators'', and obtains characterizations of nonlinear detectability in terms of relative stability and of finite-energy estimates.Comment: Many related papers can be found in: http://www.math.rutgers.edu/~sonta

    Backstepping controller synthesis and characterizations of incremental stability

    Full text link
    Incremental stability is a property of dynamical and control systems, requiring the uniform asymptotic stability of every trajectory, rather than that of an equilibrium point or a particular time-varying trajectory. Similarly to stability, Lyapunov functions and contraction metrics play important roles in the study of incremental stability. In this paper, we provide characterizations and descriptions of incremental stability in terms of existence of coordinate-invariant notions of incremental Lyapunov functions and contraction metrics, respectively. Most design techniques providing controllers rendering control systems incrementally stable have two main drawbacks: they can only be applied to control systems in either parametric-strict-feedback or strict-feedback form, and they require these control systems to be smooth. In this paper, we propose a design technique that is applicable to larger classes of (not necessarily smooth) control systems. Moreover, we propose a recursive way of constructing contraction metrics (for smooth control systems) and incremental Lyapunov functions which have been identified as a key tool enabling the construction of finite abstractions of nonlinear control systems, the approximation of stochastic hybrid systems, source-code model checking for nonlinear dynamical systems and so on. The effectiveness of the proposed results in this paper is illustrated by synthesizing a controller rendering a non-smooth control system incrementally stable as well as constructing its finite abstraction, using the computed incremental Lyapunov function.Comment: 23 pages, 2 figure

    Notions of Input to Output Stability

    Full text link
    This paper deals with several related notions of output stability with respect to inputs. The inputs may be thought of as disturbances; when there are no inputs, one obtains generalizations of the classical concepts of partial stability. The main notion studied is called input to output stability (IOS), and it reduces to input to state stability (ISS) when the output equals the complete state. Several variants, which formalize in different manners the transient behavior, are introduced. The main results provide a comparison among these notions. A companion paper establishes necessary and sufficient Lyapunov-theoretic characterizations.Comment: 16 pages See http://www.math.rutgers.edu/~sontag/ for many related paper
    • …
    corecore