80 research outputs found

    Dynamics, control, stability, diffusion and synchronization of modified chaotic colpitts oscillator with triangular wave non-linearity

    Get PDF
    The purpose of this paper is to introduce a new chaotic oscillator. Although different chaotic systems have been formulated by earlier researchers, only a few chaotic systems exhibit chaotic behaviour. In this work, a new chaotic system with chaotic attractor is introduced for triangular wave non-linearity. It is worth noting that this striking phenomenon rarely occurs in respect of chaotic systems. The system proposed in this paper has been realized with numerical simulation. The results emanating from the numerical simulation indicate the feasibility of the proposed chaotic system. More over, chaos control, stability, diffusion and synchronization of such a system have been dealt with.Publisher's Versio

    Colpitts Chaotic Oscillator Coupling with a Generalized Memristor

    Get PDF
    By introducing a generalized memristor into a fourth-order Colpitts chaotic oscillator, a new memristive Colpitts chaotic oscillator is proposed in this paper. The generalized memristor is equivalent to a diode bridge cascaded with a first-order parallel RC filter. Chaotic attractors of the oscillator are numerically revealed from the mathematical model and experimentally captured from the physical circuit. The dynamics of the memristive Colpitts chaotic oscillator is investigated both theoretically and numerically, from which it can be found that the oscillator has a unique equilibrium point and displays complex nonlinear phenomena

    Grid Multiscroll Hyperchaotic Attractors Based on Colpitts Oscillator Mode with Controllable Grid Gradient and Scroll Numbers

    Get PDF
    AbstractThrough introducing two piecewise-linear triangular wave functions in a three-dimensional spiral chaotic Colpitts oscillator model, a four-dimensional grid multiscroll hyperchaotic system is constructed. Interestingly, by adjusting a build-in parameter in a variable of one triangle wave function, the control of the gradient of the multiscroll grid is achieved. Whereas by deploying the zero points of the two triangular wave functions to extend the saddle-focus equilibrium points with index-2 in phase space the scroll numbers do not only increase along with the number of turning points, but they can also generate arbitrary multiples of products. The basic dynamical behaviors of the proposed four-dimensional multiscroll hyperchaotic system are analyzed. Finally, the hardware experimental circuit is designed and the interrelated circuit implementation is realized. The experimental results are in agreement with both theoretical analyses and numerical simulations, which verify the feasibility of the design methods

    Dynamical properties of a modified chaotic Colpitts oscillator with triangular wave non-linearity

    Get PDF
    The purpose of this paper is to introduce a new chaotic oscillator. Although different chaotic systems have been formulated by earlier researchers, only a few chaotic systems exhibit chaotic behaviour. In this work, a new chaotic system with chaotic attractor is introduced for triangular wave non-linearity. It is worth noting that this striking phenomenon rarely occurs in respect of chaotic systems. The system proposed in this paper has been realized with numerical simulation. The results emanating from the numerical simulation indicate the feasibility of the proposed chaotic system. More over, chaos control, stability, diffusion and synchronization of such a system have been dealt with

    Investigating the Rossler Attractor Using Lorentz Plot and Lyapunov Exponents

    Get PDF
    To investigate the Rossler attractor, introduced in 1976 by O.E. Rossler [3], we used Lorenz plot to show deterministic character and designated the Lyapunov exponent to show the chaotic character of the system

    Controlling chaos in Colpitts oscillator

    Get PDF
    Abstract In this paper, an adaptive backstepping design is proposed to synchronize and control the Colpitts oscillator. The proposed control approach enables stabilization of chaotic motion to a steady state as well as synchronization by recursively interlacing the choice of a Lyapunov function with the design of feedback control in a systematical way. Numerical simulations verify the effectiveness of the approach
    corecore