3 research outputs found

    DETECTION OF PNEUMONIA BY USING NINE PRE-TRAINED TRANSFER LEARNING MODELS BASED ON DEEP LEARNING TECHNIQUES

    Get PDF
    Pneumonia is a serious chest disease that affects the lungs. This disease has become an important issue that must be taken care of in the field of medicine due to its rapid and intense spread, especially among people who are addicted to smoking. This paper presents an efficient prediction system for detecting pneumonia using nine pre-trained transfer learning models based on deep learning technique (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121, DenseNet-169, AlexNet, and SqueezeNet). The dataset in this study consisted of 5856 chest x-rays, which were divided into 5216 for training and 624 for the test. In the training phase, the images were pre-processed by resizing the input images to the same dimensions to reduce complexity and computation. The images are then forwarded to the proposed models (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121, DenseNet-169, AlexNet, SqueezeNet) to extract features and classify the images as normal or pneumonia. The results of the proposed models (Inception v4, SeNet-154, Xception, PolyNet, ResNet-50, DenseNet-121 DenseNet-169, AlexNet and SqueezeNet) give accuracies (98.72%, 98.94%, 98.88%, 98.72%, 96.2%, 94.69%, 96.29%, 95.01% and 96.10%) respectively. We found that the SeNet-154 model gave the best result with an accuracy of 98.94% with a validation loss (0.018103). When comparing our results with older studies, it should be noted that the proposed method is superior to other methods

    A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images

    Get PDF
    Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods
    corecore