7,909 research outputs found
Recommended from our members
Automatic analysis of magnetic resonance (MR) sequences for the diagnosis of ligament lesions
To date the diagnosis of carpal instabilities due to ligament lesions relies upon a qualitative examination of the patient's wrist. This paper presents a novel system where sequences of magnetic resonance images (MRI) are automatically analysed to measure the motion of several wrist bones. Resulting motion graphs provide a quantitative basis for diagnostic as well as scientific purposes. As the imaging method is non-invasive up to twelve different wrist positions can be measured giving a detailed insight into the motion of the bone
A three-dimensional finite element model of maximal grip loading in the human wrist
The aim of this work was to create an anatomically accurate three-dimensional finite element model of the wrist, applying subject-specific loading and quantifying the internal load transfer through the joint during maximal grip. For three subjects, representing the anatomical variation at the wrist, loading on each digit was measured during a maximal grip strength test with simultaneous motion capture. The internal metacarpophalangeal joint load was calculated using a biomechanical model. High-resolution magnetic resonance scans were acquired to quantify bone geometry. Finite element analysis was performed, with ligaments and tendons added, to calculate the internal load distribution. It was found that for the maximal grip the thumb carried the highest load, an average of 72.2 ¡ 20.1 N in the neutral position. Results from the finite element model suggested that the highest regions of stress were located at the radial aspect of the carpus. Most of the load was transmitted through the radius, 87.5 per cent, as opposed to 12.5 per cent through the ulna with the wrist in a neutral position. A fully three-dimensional finite element analysis of the wrist using subject-specific anatomy and loading conditions was performed. The study emphasizes the importance of modelling a large ensemble of subjects in order to capture the spectrum of the load transfer through the wrist due to anatomical variation
A New Species of Mnioes (Hymenoptera: Ichneumonidae) from the United States
This is the first record of the genus Mnioes in the United States. Previously described species are all Neotropic. Townes described the genus in 1946, placing Lampronota? jircunda Cresson, 1874, and Meniscus ? orbitalis Cresson, 1874, in it. The new species described here has been collected from several areas in the United States. This study was made while the author was a graduate student at The University of Michigan, Ann Arbor, Michigan
Dividing the Ontology Alignment Task with Semantic Embeddings and Logic-based Modules
Large ontologies still pose serious challenges to state-of-the-art ontology alignment systems. In this paper we present an approach that combines a neural embedding model and logic-based modules to accurately divide an input ontology matching task into smaller and more tractable matching (sub)tasks. We have conducted a comprehensive evaluation using the datasets of the Ontology Alignment Evaluation Initiative. The results are encouraging and suggest that the proposed method is adequate in practice and can be integrated within the workflow of systems unable to cope with very large ontologies
Ultrasound of the wrist ligaments
Injuries of the intrinsic and extrinsic
wrist ligaments can lead to chronic
wrist pain and carpal instability, while
injuries of the triangular fibrocartilage
complex (TFCC) are a frequent cause of ulnar-sided wrist pain. In
the recent past, magnetic resonance
(MR) arthrography was the preferred
imaging modality for the evaluation
of these structures, but good results
can also achieved with standard MR
imaging, computed tomographic
(CT) arthrography and more recently
ultrasonography (US). Advantages of
US of the wrist over MR imaging and
MR arthrography include: lower cost,
no intraarticular injection of contrast
material, no ionizing radiation, no
limitations due to MR incompatible
implants, and real-time visualisation
with possible dynamic evaluation.
However US is operator dependent and
requires high quality equipment.peer-reviewe
Kienbock Disease
A case of a 27 years old female with history of pain in left wrists is presented. Investigations revealed necrosis of left lunate (Kienbock disease)
Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth
Human brains are three times larger, are organized differently, and mature for a longer period of time than those of our closest living relatives, the chimpanzees. Together, these characteristics are important for human cognition and social behavior, but their evolutionary origins remain unclear. To study brain growth and organization in the hominin species Australopithecus afarensis more than 3 million years ago, we scanned eight fossil crania using conventional and synchrotron computed tomography. We inferred key features of brain organization from endocranial imprints and explored the pattern of brain growth by combining new endocranial volume estimates with narrow age at death estimates for two infants. Contrary to previous claims, sulcal imprints reveal an ape-like brain organization and no features derived toward humans. A comparison of infant to adult endocranial volumes indicates protracted brain growth in A. afarensis, likely critical for the evolution of a long period of childhood learning in hominins
Different evolutionary pathways underlie the morphology of wrist bones in hominoids
BACKGROUND
The hominoid wrist has been a focus of numerous morphological analyses that aim to better understand long-standing questions about the evolution of human and hominoid hand use. However, these same analyses also suggest various scenarios of complex and mosaic patterns of morphological evolution within the wrist and potentially multiple instances of homoplasy that would benefit from require formal analysis within a phylogenetic context.We identify morphological features that principally characterize primate - and, in particular, hominoid (apes, including humans) - wrist evolution and reveal the rate, process and evolutionary timing of patterns of morphological change on individual branches of the primate tree of life. Linear morphological variables of five wrist bones - the scaphoid, lunate, triquetrum, capitate and hamate - are analyzed in a diverse sample of extant hominoids (12 species, 332 specimens), Old World (8 species, 43 specimens) and New World (4 species, 26 specimens) monkeys, fossil Miocene apes (8 species, 20 specimens) and Plio-Pleistocene hominins (8 species, 18 specimens).
RESULT
Results reveal a combination of parallel and synapomorphic morphology within haplorrhines, and especially within hominoids, across individual wrist bones. Similar morphology of some wrist bones reflects locomotor behaviour shared between clades (scaphoid, triquetrum and capitate) while others (lunate and hamate) indicate clade-specific synapomorphic morphology. Overall, hominoids show increased variation in wrist bone morphology compared with other primate clades, supporting previous analyses, and demonstrate several occurrences of parallel evolution, particularly between orangutans and hylobatids, and among hominines (extant African apes, humans and fossil hominins).
CONCLUSIONS
Our analyses indicate that different evolutionary processes can underlie the evolution of a single anatomical unit (the wrist) to produce diversity in functional and morphological adaptations across individual wrist bones. These results exemplify a degree of evolutionary and functional independence across different wrist bones, the potential evolvability of skeletal morphology, and help to contextualize the postcranial mosaicism observed in the hominin fossil record
The development of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas
Based on a previously developed rheumatoid arthritis MRI scoring system (OMERACT 2002 RAMRIS), the development team agreed which joints, MRI features, MRI sequences, and image planes would best illustrate the scoring system in an atlas. After collecting representative examples for all grades for each abnormality (synovitis, bone oedema, and bone erosion), the team met for a three day period to review the images and choose by consensus the most illustrative set for each feature, site, and grade. A predefined subset of images (for example, for erosion—all coronal slices through the bone) was extracted. These images were then re-read by the group at a different time point to confirm the scores originally assigned. Finally, all selected images were photographed and formatted by one centre and distributed to all readers for final approval
- …
