121 research outputs found

    Boolean Operations, Joins, and the Extended Low Hierarchy

    Get PDF
    We prove that the join of two sets may actually fall into a lower level of the extended low hierarchy than either of the sets. In particular, there exist sets that are not in the second level of the extended low hierarchy, EL_2, yet their join is in EL_2. That is, in terms of extended lowness, the join operator can lower complexity. Since in a strong intuitive sense the join does not lower complexity, our result suggests that the extended low hierarchy is unnatural as a complexity measure. We also study the closure properties of EL_ and prove that EL_2 is not closed under certain Boolean operations. To this end, we establish the first known (and optimal) EL_2 lower bounds for certain notions generalizing Selman's P-selectivity, which may be regarded as an interesting result in its own right.Comment: 12 page

    The descriptive theory of represented spaces

    Full text link
    This is a survey on the ongoing development of a descriptive theory of represented spaces, which is intended as an extension of both classical and effective descriptive set theory to deal with both sets and functions between represented spaces. Most material is from work-in-progress, and thus there may be a stronger focus on projects involving the author than an objective survey would merit.Comment: survey of work-in-progres

    List of R.V. Book's publications

    Get PDF

    The Robustness of LWPP and WPP, with an Application to Graph Reconstruction

    Get PDF
    We show that the counting class LWPP [FFK94] remains unchanged even if one allows a polynomial number of gap values rather than one. On the other hand, we show that it is impossible to improve this from polynomially many gap values to a superpolynomial number of gap values by relativizable proof techniques. The first of these results implies that the Legitimate Deck Problem (from the study of graph reconstruction) is in LWPP (and thus low for PP, i.e., \rm PP^{\mbox{Legitimate Deck}} = PP) if the weakened version of the Reconstruction Conjecture holds in which the number of nonisomorphic preimages is assumed merely to be polynomially bounded. This strengthens the 1992 result of K\"{o}bler, Sch\"{o}ning, and Tor\'{a}n [KST92] that the Legitimate Deck Problem is in LWPP if the Reconstruction Conjecture holds, and provides strengthened evidence that the Legitimate Deck Problem is not NP-hard. We additionally show on the one hand that our main LWPP robustness result also holds for WPP, and also holds even when one allows both the rejection- and acceptance- gap-value targets to simultaneously be polynomial-sized lists; yet on the other hand, we show that for the #P-based analog of LWPP the behavior much differs in that, in some relativized worlds, even two target values already yield a richer class than one value does. Despite that nonrobustness result for a #P-based class, we show that the #P-based "exact counting" class C=P\rm C_{=}P remains unchanged even if one allows a polynomial number of target values for the number of accepting paths of the machine

    The Quantitative Structure of Exponential Time

    Get PDF
    Department of Computer Science Iowa State University Ames, Iowa 50010 Recent results on the internal, measure-theoretic structure of the exponential time complexity classes linear polynomial E = DTIME(2 ) and E = DTIME(2 ) 2 are surveyed. The measure structure of these classes is seen to interact in informative ways with bi-immunity, complexity cores, polynomial-time many-one reducibility, circuit-size complexity, Kolmogorov complexity, and the density of hard languages. Possible implications for the structure of NP are also discussed

    Downward Collapse from a Weaker Hypothesis

    Full text link
    Hemaspaandra et al. proved that, for m>0m > 0 and 0<i<k−10 < i < k - 1: if \Sigma_i^p \BoldfaceDelta DIFF_m(\Sigma_k^p) is closed under complementation, then DIFFm(Σkp)=coDIFFm(Σkp)DIFF_m(\Sigma_k^p) = coDIFF_m(\Sigma_k^p). This sharply asymmetric result fails to apply to the case in which the hypothesis is weakened by allowing the Σip\Sigma_i^p to be replaced by any class in its difference hierarchy. We so extend the result by proving that, for s,m>0s,m > 0 and 0<i<k−10 < i < k - 1: if DIFF_s(\Sigma_i^p) \BoldfaceDelta DIFF_m(\Sigma_k^p) is closed under complementation, then DIFFm(Σkp)=coDIFFm(Σkp)DIFF_m(\Sigma_k^p) = coDIFF_m(\Sigma_k^p)
    • …
    corecore