19 research outputs found

    Multilevel Decoders Surpassing Belief Propagation on the Binary Symmetric Channel

    Full text link
    In this paper, we propose a new class of quantized message-passing decoders for LDPC codes over the BSC. The messages take values (or levels) from a finite set. The update rules do not mimic belief propagation but instead are derived using the knowledge of trapping sets. We show that the update rules can be derived to correct certain error patterns that are uncorrectable by algorithms such as BP and min-sum. In some cases even with a small message set, these decoders can guarantee correction of a higher number of errors than BP and min-sum. We provide particularly good 3-bit decoders for 3-left-regular LDPC codes. They significantly outperform the BP and min-sum decoders, but more importantly, they achieve this at only a fraction of the complexity of the BP and min-sum decoders.Comment: 5 pages, in Proc. of 2010 IEEE International Symposium on Information Theory (ISIT

    Relaxed Half-Stochastic Belief Propagation

    Full text link
    Low-density parity-check codes are attractive for high throughput applications because of their low decoding complexity per bit, but also because all the codeword bits can be decoded in parallel. However, achieving this in a circuit implementation is complicated by the number of wires required to exchange messages between processing nodes. Decoding algorithms that exchange binary messages are interesting for fully-parallel implementations because they can reduce the number and the length of the wires, and increase logic density. This paper introduces the Relaxed Half-Stochastic (RHS) decoding algorithm, a binary message belief propagation (BP) algorithm that achieves a coding gain comparable to the best known BP algorithms that use real-valued messages. We derive the RHS algorithm by starting from the well-known Sum-Product algorithm, and then derive a low-complexity version suitable for circuit implementation. We present extensive simulation results on two standardized codes having different rates and constructions, including low bit error rate results. These simulations show that RHS can be an advantageous replacement for the existing state-of-the-art decoding algorithms when targeting fully-parallel implementations

    Nouvelles stratégies de concaténation de codes séries pour la réduction du seuil d’erreur dans le contrôle de parité à faible densité et dans les turbo codes produits

    Get PDF
    This paper presents a novel multiple serial code concatenation (SCC) strategy to combat the error-floor problem in iterated sparse graph-based error correcting codes such as turbo product-codes (TPC) and low-density parity-check (LDPC) codes. Although SCC has been widely used in the past to reduce the error-floor in iterative decoders, the main stumbling block for its practical application in high-speed communication systems has been the need for long and complex outer codes. Alternative, short outer block codes with interleaving have been shown to provide a good tradeoff between complexity and performance. Nevertheless, their application to next-generation high-speed communication systems is still a major challenge as a result of the careful design of long complex interleavers needed to meet the requirements of these applications. The SCC scheme proposed in this work is based on the use of short outer block codes. Departing from techniques used in previous proposals, the long outer code and interleaver are replaced by a simple block code combined with a novel encoding/decoding strategy. This allows the proposed SCC to provide a better tradeoff between performance and complexity than previous techniques. Several application examples showing the benefits of the proposed SCC are described. Particularly, a new coding scheme suitable for high-speed optical communication is introduced.Fil: Morero, Damián Alfonso. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Fisicas y Naturales; ArgentinaFil: Hueda, Mario Rafael. Universidad Nacional de Cordoba. Facultad de Ciencias Exactas, Fisicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
    corecore