6,450 research outputs found

    Meta learning of bounds on the Bayes classifier error

    Full text link
    Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.Comment: 6 pages, 3 figures, to appear in proceedings of 2015 IEEE Signal Processing and SP Education Worksho

    Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators

    Full text link
    We provide finite-sample analysis of a general framework for using k-nearest neighbor statistics to estimate functionals of a nonparametric continuous probability density, including entropies and divergences. Rather than plugging a consistent density estimate (which requires k→∞k \to \infty as the sample size n→∞n \to \infty) into the functional of interest, the estimators we consider fix k and perform a bias correction. This is more efficient computationally, and, as we show in certain cases, statistically, leading to faster convergence rates. Our framework unifies several previous estimators, for most of which ours are the first finite sample guarantees.Comment: 16 pages, 0 figure

    Fast learning rates for plug-in classifiers

    Full text link
    It has been recently shown that, under the margin (or low noise) assumption, there exist classifiers attaining fast rates of convergence of the excess Bayes risk, that is, rates faster than n−1/2n^{-1/2}. The work on this subject has suggested the following two conjectures: (i) the best achievable fast rate is of the order n−1n^{-1}, and (ii) the plug-in classifiers generally converge more slowly than the classifiers based on empirical risk minimization. We show that both conjectures are not correct. In particular, we construct plug-in classifiers that can achieve not only fast, but also super-fast rates, that is, rates faster than n−1n^{-1}. We establish minimax lower bounds showing that the obtained rates cannot be improved.Comment: Published at http://dx.doi.org/10.1214/009053606000001217 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An adaptive nearest neighbor rule for classification

    Full text link
    We introduce a variant of the kk-nearest neighbor classifier in which kk is chosen adaptively for each query, rather than supplied as a parameter. The choice of kk depends on properties of each neighborhood, and therefore may significantly vary between different points. (For example, the algorithm will use larger kk for predicting the labels of points in noisy regions.) We provide theory and experiments that demonstrate that the algorithm performs comparably to, and sometimes better than, kk-NN with an optimal choice of kk. In particular, we derive bounds on the convergence rates of our classifier that depend on a local quantity we call the `advantage' which is significantly weaker than the Lipschitz conditions used in previous convergence rate proofs. These generalization bounds hinge on a variant of the seminal Uniform Convergence Theorem due to Vapnik and Chervonenkis; this variant concerns conditional probabilities and may be of independent interest
    • …
    corecore