9,130 research outputs found

    Lower bounds for the blow-up time in a non-local reaction–diffusion problem

    Get PDF
    AbstractFor a non-local reaction–diffusion problem with either homogeneous Dirichlet or homogeneous Neumann boundary conditions, the questions of blow-up are investigated. Specifically, if the solutions blow up, lower bounds for the time of blow-up are derived

    On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions

    Get PDF
    In this paper we analyze the porous medium equation \begin{equation}\label{ProblemAbstract} \tag{◊\Diamond} %\begin{cases} u_t=\Delta u^m + a\io u^p-b u^q -c\lvert\nabla\sqrt{u}\rvert^2 \quad \textrm{in}\quad \Omega \times I,%\\ %u_\nu-g(u)=0 & \textrm{on}\; \partial \Omega, t>0,\\ %u({\bf x},0)=u_0({\bf x})&{\bf x} \in \Omega,\\ %\end{cases} \end{equation} where Ω\Omega is a bounded and smooth domain of RN\R^N, with N≥1N\geq 1, and I=[0,t∗)I= [0,t^*) is the maximal interval of existence for uu. The constants a,b,ca,b,c are positive, m,p,qm,p,q proper real numbers larger than 1 and the equation is complemented with nonlinear boundary conditions involving the outward normal derivative of uu. Under some hypothesis on the data, including intrinsic relations between m,pm,p and qq, and assuming that for some positive and sufficiently regular function u_0(\nx) the Initial Boundary Value Problem (IBVP) associated to \eqref{ProblemAbstract} possesses a positive classical solution u=u(\nx,t) on Ω×I\Omega \times I: \begin{itemize} \item [▹\triangleright] when p>qp>q and in 2- and 3-dimensional domains, we determine a \textit{lower bound of} t∗t^* for those uu becoming unbounded in Lm(p−1)(Ω)L^{m(p-1)}(\Omega) at such t∗t^*; \item [▹\triangleright] when p<qp<q and in NN-dimensional settings, we establish a \textit{global existence criterion} for uu. \end{itemize

    Nonlinear Convection in Reaction-diffusion Equations under dynamical boundary conditions

    Full text link
    We investigate blow-up phenomena for positive solutions of nonlinear reaction-diffusion equations including a nonlinear convection term ∂tu=Δu−g(u)⋅∇u+f(u)\partial_t u = \Delta u - g(u) \cdot \nabla u + f(u) in a bounded domain of RN\mathbb{R}^N under the dissipative dynamical boundary conditions σ∂tu+∂νu=0\sigma \partial_t u + \partial_\nu u =0. Some conditions on gg and ff are discussed to state if the positive solutions blow up in finite time or not. Moreover, for certain classes of nonlinearities, an upper-bound for the blow-up time can be derived and the blow-up rate can be determinated.Comment: 20 page
    • …
    corecore