68 research outputs found

    Graph Embedding Techniques for Bounding Condition Numbers of Incomplete Factor Preconditioning

    Get PDF
    We extend graph embedding techniques for bounding the spectral condition number of preconditioned systems involving symmetric, irreducibly diagonally dominant M-matrices to systems where the preconditioner is not diagonally dominant. In particular, this allows us to bound the spectral condition number when the preconditioner is based on an incomplete factorization. We provide a review of previous techniques, describe our extension, and give examples both of a bound for a model problem, and of ways in which our techniques give intuitive way of looking at incomplete factor preconditioners

    On non-linear network embedding methods

    Get PDF
    As a linear method, spectral clustering is the only network embedding algorithm that offers both a provably fast computation and an advanced theoretical understanding. The accuracy of spectral clustering depends on the Cheeger ratio defined as the ratio between the graph conductance and the 2nd smallest eigenvalue of its normalizedLaplacian. In several graph families whose Cheeger ratio reaches its upper bound of Theta(n), the approximation power of spectral clustering is proven to perform poorly. Moreover, recent non-linear network embedding methods have surpassed spectral clustering by state-of-the-art performance with little to no theoretical understanding to back them. The dissertation includes work that: (1) extends the theory of spectral clustering in order to address its weakness and provide ground for a theoretical understanding of existing non-linear network embedding methods.; (2) provides non-linear extensions of spectral clustering with theoretical guarantees, e.g., via different spectral modification algorithms; (3) demonstrates the potentials of this approach on different types and sizes of graphs from industrial applications; and (4)makes a theory-informed use of artificial networks

    An Efficient Parallel Solver for SDD Linear Systems

    Full text link
    We present the first parallel algorithm for solving systems of linear equations in symmetric, diagonally dominant (SDD) matrices that runs in polylogarithmic time and nearly-linear work. The heart of our algorithm is a construction of a sparse approximate inverse chain for the input matrix: a sequence of sparse matrices whose product approximates its inverse. Whereas other fast algorithms for solving systems of equations in SDD matrices exploit low-stretch spanning trees, our algorithm only requires spectral graph sparsifiers
    corecore