24 research outputs found

    Depth-4 Lower Bounds, Determinantal Complexity : A Unified Approach

    Get PDF
    Tavenas has recently proved that any n^{O(1)}-variate and degree n polynomial in VP can be computed by a depth-4 circuit of size 2^{O(\sqrt{n}\log n)}. So to prove VP not equal to VNP, it is sufficient to show that an explicit polynomial in VNP of degree n requires 2^{\omega(\sqrt{n}\log n)} size depth-4 circuits. Soon after Tavenas's result, for two different explicit polynomials, depth-4 circuit size lower bounds of 2^{\Omega(\sqrt{n}\log n)} have been proved Kayal et al. and Fournier et al. In particular, using combinatorial design Kayal et al.\ construct an explicit polynomial in VNP that requires depth-4 circuits of size 2^{\Omega(\sqrt{n}\log n)} and Fournier et al.\ show that iterated matrix multiplication polynomial (which is in VP) also requires 2^{\Omega(\sqrt{n}\log n)} size depth-4 circuits. In this paper, we identify a simple combinatorial property such that any polynomial f that satisfies the property would achieve similar circuit size lower bound for depth-4 circuits. In particular, it does not matter whether f is in VP or in VNP. As a result, we get a very simple unified lower bound analysis for the above mentioned polynomials. Another goal of this paper is to compare between our current knowledge of depth-4 circuit size lower bounds and determinantal complexity lower bounds. We prove the that the determinantal complexity of iterated matrix multiplication polynomial is \Omega(dn) where d is the number of matrices and n is the dimension of the matrices. So for d=n, we get that the iterated matrix multiplication polynomial achieves the current best known lower bounds in both fronts: depth-4 circuit size and determinantal complexity. To the best of our knowledge, a \Theta(n) bound for the determinantal complexity for the iterated matrix multiplication polynomial was known only for constant d>1 by Jansen.Comment: Extension of the previous uploa

    On the Limits of Depth Reduction at Depth 3 Over Small Finite Fields

    Full text link
    Recently, Gupta et.al. [GKKS2013] proved that over Q any nO(1)n^{O(1)}-variate and nn-degree polynomial in VP can also be computed by a depth three ΣΠΣ\Sigma\Pi\Sigma circuit of size 2O(nlog3/2n)2^{O(\sqrt{n}\log^{3/2}n)}. Over fixed-size finite fields, Grigoriev and Karpinski proved that any ΣΠΣ\Sigma\Pi\Sigma circuit that computes DetnDet_n (or PermnPerm_n) must be of size 2Ω(n)2^{\Omega(n)} [GK1998]. In this paper, we prove that over fixed-size finite fields, any ΣΠΣ\Sigma\Pi\Sigma circuit for computing the iterated matrix multiplication polynomial of nn generic matrices of size n×nn\times n, must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The importance of this result is that over fixed-size fields there is no depth reduction technique that can be used to compute all the nO(1)n^{O(1)}-variate and nn-degree polynomials in VP by depth 3 circuits of size 2o(nlogn)2^{o(n\log n)}. The result [GK1998] can only rule out such a possibility for depth 3 circuits of size 2o(n)2^{o(n)}. We also give an example of an explicit polynomial (NWn,ϵ(X)NW_{n,\epsilon}(X)) in VNP (not known to be in VP), for which any ΣΠΣ\Sigma\Pi\Sigma circuit computing it (over fixed-size fields) must be of size 2Ω(nlogn)2^{\Omega(n\log n)}. The polynomial we consider is constructed from the combinatorial design. An interesting feature of this result is that we get the first examples of two polynomials (one in VP and one in VNP) such that they have provably stronger circuit size lower bounds than Permanent in a reasonably strong model of computation. Next, we prove that any depth 4 ΣΠ[O(n)]ΣΠ[n]\Sigma\Pi^{[O(\sqrt{n})]}\Sigma\Pi^{[\sqrt{n}]} circuit computing NWn,ϵ(X)NW_{n,\epsilon}(X) (over any field) must be of size 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)}. To the best of our knowledge, the polynomial NWn,ϵ(X)NW_{n,\epsilon}(X) is the first example of an explicit polynomial in VNP such that it requires 2Ω(nlogn)2^{\Omega(\sqrt{n}\log n)} size depth four circuits, but no known matching upper bound

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when CPC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    Improved bounds for reduction to depth 4 and depth 3

    Full text link
    Koiran showed that if a nn-variate polynomial of degree dd (with d=nO(1)d=n^{O(1)}) is computed by a circuit of size ss, then it is also computed by a homogeneous circuit of depth four and of size 2O(dlog(d)log(s))2^{O(\sqrt{d}\log(d)\log(s))}. Using this result, Gupta, Kamath, Kayal and Saptharishi gave a exp(O(dlog(d)log(n)log(s)))\exp(O(\sqrt{d\log(d)\log(n)\log(s)})) upper bound for the size of the smallest depth three circuit computing a nn-variate polynomial of degree d=nO(1)d=n^{O(1)} given by a circuit of size ss. We improve here Koiran's bound. Indeed, we show that if we reduce an arithmetic circuit to depth four, then the size becomes exp(O(dlog(ds)log(n)))\exp(O(\sqrt{d\log(ds)\log(n)})). Mimicking Gupta, Kamath, Kayal and Saptharishi's proof, it also implies the same upper bound for depth three circuits. This new bound is not far from optimal in the sense that Gupta, Kamath, Kayal and Saptharishi also showed a 2Ω(d)2^{\Omega(\sqrt{d})} lower bound for the size of homogeneous depth four circuits such that gates at the bottom have fan-in at most d\sqrt{d}. Finally, we show that this last lower bound also holds if the fan-in is at least d\sqrt{d}

    Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits

    Full text link
    In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP of degree nn in n2n^2 variables such that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(loglogn)n^{\Omega(\log \log n)}. Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed superpolynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed exponential lower bounds. The main ingredient in our proof is a new complexity measure of {\it bounded support} shifted partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth 4 circuits where all the monomials computed at the bottom layer have {\it bounded support} (but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et al [GKKS13, KSS13]. This new lower bound combined with a careful "random restriction" procedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded support) gives us our final result
    corecore