12 research outputs found

    On total communication complexity of collapsing protocols for pointer jumping problem

    Full text link
    This paper focuses on bounding the total communication complexity of collapsing protocols for multiparty pointer jumping problem (MPJknMPJ_k^n). Brody and Chakrabati in \cite{bc08} proved that in such setting one of the players must communicate at least n0.5lognn - 0.5\log{n} bits. Liang in \cite{liang} has shown protocol matching this lower bound on maximum complexity. His protocol, however, was behaving worse than the trivial one in terms of total complexity (number of bits sent by all players). He conjectured that achieving total complexity better then the trivial one is impossible. In this paper we prove this conjecture. Namely, we show that for a collapsing protocol for MPJknMPJ_k^n, the total communication complexity is at least n2n-2 which closes the gap between lower and upper bound for total complexity of MPJknMPJ_k^n in collapsing setting

    Sublinear Communication Protocols for Multi-Party Pointer Jumping and a Related Lower Bound

    Get PDF
    We study the one-way number-on-the-forehead (NOF) communication complexity of the kk-layer pointer jumping problem with nn vertices per layer. This classic problem, which has connections to many aspects of complexity theory, has seen a recent burst of research activity, seemingly preparing the ground for an Ω(n)\Omega(n) lower bound, for constant kk. Our first result is a surprising sublinear -- i.e., o(n)o(n) -- upper bound for the problem that holds for k3k \ge 3, dashing hopes for such a lower bound. A closer look at the protocol achieving the upper bound shows that all but one of the players involved are collapsing, i.e., their messages depend only on the composition of the layers ahead of them. We consider protocols for the pointer jumping problem where all players are collapsing. Our second result shows that a strong nO(logn)n - O(\log n) lower bound does hold in this case. Our third result is another upper bound showing that nontrivial protocols for (a non-Boolean version of) pointer jumping are possible even when all players are collapsing. Our lower bound result uses a novel proof technique, different from those of earlier lower bounds that had an information-theoretic flavor. We hope this is useful in further study of the problem

    Incidence Geometries and the Pass Complexity of Semi-Streaming Set Cover

    Full text link
    Set cover, over a universe of size nn, may be modelled as a data-streaming problem, where the mm sets that comprise the instance are to be read one by one. A semi-streaming algorithm is allowed only O(npoly{logn,logm})O(n\, \mathrm{poly}\{\log n, \log m\}) space to process this stream. For each p1p \ge 1, we give a very simple deterministic algorithm that makes pp passes over the input stream and returns an appropriately certified (p+1)n1/(p+1)(p+1)n^{1/(p+1)}-approximation to the optimum set cover. More importantly, we proceed to show that this approximation factor is essentially tight, by showing that a factor better than 0.99n1/(p+1)/(p+1)20.99\,n^{1/(p+1)}/(p+1)^2 is unachievable for a pp-pass semi-streaming algorithm, even allowing randomisation. In particular, this implies that achieving a Θ(logn)\Theta(\log n)-approximation requires Ω(logn/loglogn)\Omega(\log n/\log\log n) passes, which is tight up to the loglogn\log\log n factor. These results extend to a relaxation of the set cover problem where we are allowed to leave an ε\varepsilon fraction of the universe uncovered: the tight bounds on the best approximation factor achievable in pp passes turn out to be Θp(min{n1/(p+1),ε1/p})\Theta_p(\min\{n^{1/(p+1)}, \varepsilon^{-1/p}\}). Our lower bounds are based on a construction of a family of high-rank incidence geometries, which may be thought of as vast generalisations of affine planes. This construction, based on algebraic techniques, appears flexible enough to find other applications and is therefore interesting in its own right.Comment: 20 page

    Towards Tight Bounds for the Streaming Set Cover Problem

    Full text link
    We consider the classic Set Cover problem in the data stream model. For nn elements and mm sets (mnm\geq n) we give a O(1/δ)O(1/\delta)-pass algorithm with a strongly sub-linear O~(mnδ)\tilde{O}(mn^{\delta}) space and logarithmic approximation factor. This yields a significant improvement over the earlier algorithm of Demaine et al. [DIMV14] that uses exponentially larger number of passes. We complement this result by showing that the tradeoff between the number of passes and space exhibited by our algorithm is tight, at least when the approximation factor is equal to 11. Specifically, we show that any algorithm that computes set cover exactly using (12δ1)({1 \over 2\delta}-1) passes must use Ω~(mnδ)\tilde{\Omega}(mn^{\delta}) space in the regime of m=O(n)m=O(n). Furthermore, we consider the problem in the geometric setting where the elements are points in R2\mathbb{R}^2 and sets are either discs, axis-parallel rectangles, or fat triangles in the plane, and show that our algorithm (with a slight modification) uses the optimal O~(n)\tilde{O}(n) space to find a logarithmic approximation in O(1/δ)O(1/\delta) passes. Finally, we show that any randomized one-pass algorithm that distinguishes between covers of size 2 and 3 must use a linear (i.e., Ω(mn)\Omega(mn)) amount of space. This is the first result showing that a randomized, approximate algorithm cannot achieve a space bound that is sublinear in the input size. This indicates that using multiple passes might be necessary in order to achieve sub-linear space bounds for this problem while guaranteeing small approximation factors.Comment: A preliminary version of this paper is to appear in PODS 201

    Lower bounds for quantile estimation in random-order and multi-pass streaming

    Get PDF
    Abstract. We present lower bounds on the space required to estimate the quantiles of a stream of numerical values. Quantile estimation is perhaps the most studied problem in the data stream model and it is relatively well understood in the basic single-pass data stream model in which the values are ordered adversarially. Natural extensions of this basic model include the random-order model in which the values are ordered randomly (e.g. [21, 5, 13, 11, 12]) and the multi-pass model in which an algorithm is permitted a limited number of passes over the stream (e.g. [6, 7, 1, 19, 2, 6, 7, 1, 19, 2]). We present lower bounds that complement existing upper bounds [21, 11] in both models. One consequence is an exponential separation between the random-order and adversarialorder models: using Ω(polylog n) space, exact selection requires Ω(log n) passes in the adversarial-order model while O(log log n) passes are sufficient in the random-order model.
    corecore