5 research outputs found

    Author index Volume 11 (1980)

    Get PDF

    Fast Computation of the NN-th Term of a qq-Holonomic Sequence and Applications

    Get PDF
    33 pages. Long version of the conference paper Computing the NN-th term of a qq-holonomic sequence. Proceedings ISSAC'20, pp. 46–53, ACM Press, 2020 (https://hal.inria.fr/hal-02882885)International audienceIn 1977, Strassen invented a famous baby-step/giant-step algorithm that computes the factorial N!N! in arithmetic complexity quasi-linear in N\sqrt{N}. In 1988, the Chudnovsky brothers generalized Strassen’s algorithm to the computation of the NN-th term of any holonomic sequence in essentially the same arithmetic complexity. We design qq-analogues of these algorithms. We first extend Strassen’s algorithm to the computation of the qq-factorial of NN, then Chudnovskys' algorithm to the computation of the NN-th term of any qq-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in N\sqrt{N}; surprisingly, they are simpler than their analogues in the holonomic case. We provide a detailed cost analysis, in both arithmetic and bit complexity models. Moreover, we describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear qq-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost

    Ideology of correct test sequences : Kakeya sets, combinatorial Nullstellensatz and generalizations to secant sequences

    Get PDF
    RESUMEN: Algunos de los primeros ejemplos de algoritmos probabilistas fueron los de Solovay-Strassen y Miller-Rabin para el problema de primalidad. Poco después, aparecieron algoritmos probabilistas para testar la nulidad de polinomios dados en evaluación. Dos fueron las ideologías para hacer frente a este problema: los tests de Schwartz-Zippel y los Conjuntos Cuestores (J. Heintz y C.-P. Schnorr). El objetivo de este trabajo es generalizar y comprender mejor la noción de Conjunto Cuestor. Para ello, necesitamos primero una Desigualdad de Bézout para conjuntos constructibles (Capítulo 1). Después, generalizamos la definición de Conjunto Cuestor y vemos que los conjuntos de Kakeya sobre cuerpos finitos y el Nullstellensatz Combinatorio son casos particulares de esta definición (Capítulo 2). Finalmente, generalizamos el resultado principal de J. Heintz y C.-P. Schnorr, estudiando una forma de testar si una lista de polinomios es sucesión secante (Capítulo 3).ABSTRACT: Some of the first examples of probabilistic algorithms were those of Solovay-Strassen and Miller-Rabin for testing primality. Soon afterwards, probabilistic algorithms appeared for testing nulity of polynomials given by evaluation. Two were the ideologies for facing this problem: Schwartz-Zippel tests and Correct Tests Sequences (J. Heintz, C.-P. Schnorr). The aim of this project is to generalize and better comprehend this notion of Correct Test Sequence. In order to do that, we first need a Bézout's Inequality for constructible sets (Chapter 1). Then, we generalize the definition of Correct Test Sequence and show that Kakeya sets over finite fields and the Combinatorial Nullstellensatz are particular cases of this definition (Chapter 2). Finally, we generalize the main result of J. Heintz and C.-P. Schnorr, studying a way to test whether a list of polynomials forms a secant sequence (Chapter 3).Grado en Matemática
    corecore