7 research outputs found

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    High rate locally-correctable and locally-testable codes with sub-polynomial query complexity

    Full text link
    In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist binary LCCs and LTCs with block length nn, constant rate (which can even be taken arbitrarily close to 1), constant relative distance, and query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})). Previously such codes were known to exist only with Ω(nβ)\Omega(n^{\beta}) query complexity (for constant β>0\beta > 0), and there were several, quite different, constructions known. Our codes are based on a general distance-amplification method of Alon and Luby~\cite{AL96_codes}. We show that this method interacts well with local correctors and testers, and obtain our main results by applying it to suitably constructed LCCs and LTCs in the non-standard regime of \emph{sub-constant relative distance}. Along the way, we also construct LCCs and LTCs over large alphabets, with the same query complexity exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})), which additionally have the property of approaching the Singleton bound: they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large alphabet error-correcting code to further be an LCC or LTC with exp(O~(logn))\exp(\tilde{O}(\sqrt{\log n})) query complexity does not require any sacrifice in terms of rate and distance! Such a result was previously not known for any o(n)o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters

    Relaxed Local Correctability from Local Testing

    Full text link
    We cement the intuitive connection between relaxed local correctability and local testing by presenting a concrete framework for building a relaxed locally correctable code from any family of linear locally testable codes with sufficiently high rate. When instantiated using the locally testable codes of Dinur et al. (STOC 2022), this framework yields the first asymptotically good relaxed locally correctable and decodable codes with polylogarithmic query complexity, which finally closes the superpolynomial gap between query lower and upper bounds. Our construction combines high-rate locally testable codes of various sizes to produce a code that is locally testable at every scale: we can gradually "zoom in" to any desired codeword index, and a local tester at each step certifies that the next, smaller restriction of the input has low error. Our codes asymptotically inherit the rate and distance of any locally testable code used in the final step of the construction. Therefore, our technique also yields nonexplicit relaxed locally correctable codes with polylogarithmic query complexity that have rate and distance approaching the Gilbert-Varshamov bound.Comment: 18 page

    Locality via Partially Lifted Codes

    Get PDF
    In error-correcting codes, locality refers to several different ways of quantifying how easily a small amount of information can be recovered from encoded data. In this work, we study a notion of locality called the s-Disjoint-Repair-Group Property (s-DRGP). This notion can interpolate between two very different settings in coding theory: that of Locally Correctable Codes (LCCs) when s is large - a very strong guarantee - and Locally Recoverable Codes (LRCs) when s is small - a relatively weaker guarantee. This motivates the study of the s-DRGP for intermediate s, which is the focus of our paper. We construct codes in this parameter regime which have a higher rate than previously known codes. Our construction is based on a novel variant of the lifted codes of Guo, Kopparty and Sudan. Beyond the results on the s-DRGP, we hope that our construction is of independent interest, and will find uses elsewhere

    On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors

    Get PDF
    Locally Decodable Codes (LDCs) are error-correcting codes C:ΣnΣmC:\Sigma^n\rightarrow \Sigma^m with super-fast decoding algorithms. They are important mathematical objects in many areas of theoretical computer science, yet the best constructions so far have codeword length mm that is super-polynomial in nn, for codes with constant query complexity and constant alphabet size. In a very surprising result, Ben-Sasson et al. showed how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost linear codeword length over the binary alphabet, and used them to obtain significantly-improved constructions of Probabilistically Checkable Proofs. In this work, we study RLDCs in the standard Hamming-error setting, and introduce their variants in the insertion and deletion (Insdel) error setting. Insdel LDCs were first studied by Ostrovsky and Paskin-Cherniavsky, and are further motivated by recent advances in DNA random access bio-technologies, in which the goal is to retrieve individual files from a DNA storage database. Our first result is an exponential lower bound on the length of Hamming RLDCs making 2 queries, over the binary alphabet. This answers a question explicitly raised by Gur and Lachish. Our result exhibits a "phase-transition"-type behavior on the codeword length for constant-query Hamming RLDCs. We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version. On the one hand, we construct weak Insdel RLDCs with with parameters matching those of the Hamming variants. On the other hand, we prove exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these variants are equivalent in the Hamming setting, they are significantly different in the insdel setting. Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs

    New affine-invariant codes from lifting

    Full text link
    corecore