113 research outputs found

    Learning circuits with few negations

    Get PDF
    Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, giving near-matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions)

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [1,1][-1,1]-valued dd-resilient function in 1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between 1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that 1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    Learning Circuits with few Negations

    Get PDF
    Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, establishing nearly matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A.A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions)

    A Complete Characterization of Statistical Query Learning with Applications to Evolvability

    Get PDF
    Statistical query (SQ) learning model of Kearns (1993) is a natural restriction of the PAC learning model in which a learning algorithm is allowed to obtain estimates of statistical properties of the examples but cannot see the examples themselves. We describe a new and simple characterization of the query complexity of learning in the SQ learning model. Unlike the previously known bounds on SQ learning our characterization preserves the accuracy and the efficiency of learning. The preservation of accuracy implies that that our characterization gives the first characterization of SQ learning in the agnostic learning framework. The preservation of efficiency is achieved using a new boosting technique and allows us to derive a new approach to the design of evolutionary algorithms in Valiant's (2006) model of evolvability. We use this approach to demonstrate the existence of a large class of monotone evolutionary learning algorithms based on square loss performance estimation. These results differ significantly from the few known evolutionary algorithms and give evidence that evolvability in Valiant's model is a more versatile phenomenon than there had been previous reason to suspect.Comment: Simplified Lemma 3.8 and it's application

    Stabbing Planes

    Get PDF
    We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its "integer negation." That is, we can (nondeterministically choose) a hyperplane a x >= b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x >= b, the points satisfying a x <= b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity

    Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

    Get PDF
    Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function. Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on Rn\mathbb{R}^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp(x0.99)\exp(-|x|^{0.99}). Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O(log(1/δ))O(\log(1/\delta))-wise independence, for a tail probability of δ\delta. We show that their results are tight up to constant factors. These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.Comment: 22 page

    Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

    Get PDF
    A secret-sharing scheme enables a dealer, holding a secret string, to distribute shares to parties such that only pre-defined authorized subsets of parties can reconstruct the secret. The collection of authorized sets is called an access structure. There is a huge gap between the best known upper bounds on the share size of a secret-sharing scheme realizing an arbitrary access structure and the best known lower bounds on the size of these shares. For an arbitrary nn-party access structure, the best known upper bound on the share size is 2O(n)2^{O(n)}. On the other hand, the best known lower bound on the total share size is much smaller, i.e., Ω(n2/log(n))\Omega(n^2/\log (n)) [Csirmaz, \emph{Studia Sci. Math. Hungar.}]. This lower bound was proved more than 25 years ago and no major progress has been made since. In this paper, we study secret-sharing schemes for kk-hypergraphs, i.e., for access structures where all minimal authorized sets are of size exactly kk (however, unauthorized sets can be larger). We consider the case where kk is small, i.e., constant or at most log(n)\log (n). The trivial upper bound for these access structures is O(n(n1k1))O(n\cdot \binom{n-1}{k-1}) and this can be slightly improved. If there were efficient secret-sharing schemes for such kk-hypergraphs (e.g., 22-hypergraphs or 33-hypergraphs), then we would be able to construct secret-sharing schemes for arbitrary access structures that are better than the best known schemes. Thus, understanding the share size required for kk-hypergraphs is important. Prior to our work, the best known lower bound for these access structures was Ω(nlog(n))\Omega(n \log (n)), which holds already for graphs (i.e., 22-hypergraphs). We improve this lower bound, proving a lower bound of Ω(n21/(k1)/k)\Omega(n^{2-1/(k-1)}/k) on the total share size for some explicit kk-hypergraphs, where 3klog(n)3 \leq k \leq \log (n). For example, for 33-hypergraphs we prove a lower bound of Ω(n3/2)\Omega(n^{3/2}). For log(n)\log (n)-hypergraphs, we prove a lower bound of Ω(n2/log(n))\Omega(n^{2}/\log (n)), i.e., we show that the lower bound of Csirmaz holds already when all minimal authorized sets are of size log(n)\log (n). Our proof is simple and shows that the lower bound of Csirmaz holds for a simple variant of the access structure considered by Csirmaz. Using our results, we prove a near quadratic separation between the required share size for realizing an explicit access structure and the monotone circuit size describing the access structure,i.e., the share size in Ω(n2/log(n))\Omega(n^2/\log(n)) and the monotone circuit size is O(nlog(n))O(n\log(n)) (where the circuit has depth 33)

    Theoretical and Practical Approaches for Hardness Amplification of PUFs

    Get PDF
    The era of PUFs has been characterized by the efforts put into research and the development of PUFs that are robust against attacks, in particular, machine learning (ML) attacks. In the lack of systematic and provable methods for this purpose, we have witnessed the ever-continuing competition between PUF designers/ manufacturers, cryptanalysts, and of course, adversaries that maliciously break the security of PUFs. This is despite a series of acknowledged principles developed in cryptography and complexity theory, under the umbrella term ``hardness amplification. The goal of studies on the hardness amplification is to build a strongly secure construction out of considerably weaker primitives. This paper aims at narrowing the gap between these studies and hardware security, specifically for applications in the domain of PUFs. To this end, we first review an example of practical efforts made to construct more secure PUFs, namely the concept of rolling PUFs. Based on what can be learned from this and central insights provided by the ML and complexity theory, we propose a new PUF-based scheme built around the idea of using a new function, namely, the Tribes function, which combines the outputs of a set of PUFs to generate the final response. Our theoretical findings are discussed in an exhaustive manner and supported by the results of experiments, conducted extensively on real-world PUFs

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore