4,980 research outputs found

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]GFORMULA[s]\circ \mathcal{G} on more than 1/2+ε1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k4kR(k)(G)log(n/ε)log(1/ε))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]PTFk1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(sR(2)(G)log(s/ε)log(1/ε))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that ε\varepsilon-fools FORMULA[s]GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2s1/4log(n)log(n/ε))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where ε1/n\varepsilon \leq 1/n. (3) There is a randomized 2nt2^{n-t}-time #\#SAT algorithm for FORMULA[s]GFORMULA[s] \circ \mathcal{G}, where t=Ω(nslog2(s)R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/logn)2^{O(n/\log n)}

    Bounded Indistinguishability for Simple Sources

    Get PDF

    Consistency of Spectral Hypergraph Partitioning under Planted Partition Model

    Full text link
    Hypergraph partitioning lies at the heart of a number of problems in machine learning and network sciences. Many algorithms for hypergraph partitioning have been proposed that extend standard approaches for graph partitioning to the case of hypergraphs. However, theoretical aspects of such methods have seldom received attention in the literature as compared to the extensive studies on the guarantees of graph partitioning. For instance, consistency results of spectral graph partitioning under the stochastic block model are well known. In this paper, we present a planted partition model for sparse random non-uniform hypergraphs that generalizes the stochastic block model. We derive an error bound for a spectral hypergraph partitioning algorithm under this model using matrix concentration inequalities. To the best of our knowledge, this is the first consistency result related to partitioning non-uniform hypergraphs.Comment: 35 pages, 2 figures, 1 tabl

    Conspiracies between learning algorithms, circuit lower bounds, and pseudorandomness

    Get PDF
    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size ≤ s(n). We show: Learning Speedups. If C[poly(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2n/nω(1), then for every k ≥ 1 and ε > 0 the class C[n k ] can be learned to high accuracy in time O(2n ε ). There is ε > 0 such that C[2n ε ] can be learned in time 2n/nω(1) if and only if C[poly(n)] can be learned in time 2(log n) O(1) . Equivalences between Learning Models. We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness. In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning. If for each k ≥ 1, (depth-d)-C[n k ] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2n/nω(1), then for each k ≥ 1, BPE * (depth-d)-C[n k ]. If for some ε > 0 there are P-natural proofs useful against C[2n ε ], then ZPEXP * C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes. If there is a k > 0 such that BPE ⊆ i.o.Circuit[n k ], then BPEXP ⊆ i.o.EXP/O(log n). If ZPEXP ⊆ i.o.Circuit[2n/3 ], then ZPEXP ⊆ i.o.ESUBEXP. Hardness Results for MCSP. All functions in non-uniform NC1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC0 circuits. In particular, if MCSP ∈ TC0 then NC1 = TC0

    Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

    Get PDF
    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size <= s(n). We show: Learning Speedups: If C[s(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2^n/n^{omega(1)}, then for every k >= 1 and epsilon > 0 the class C[n^k] can be learned to high accuracy in time O(2^{n^epsilon}). There is epsilon > 0 such that C[2^{n^{epsilon}}] can be learned in time 2^n/n^{omega(1)} if and only if C[poly(n)] can be learned in time 2^{(log(n))^{O(1)}}. Equivalences between Learning Models: We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness: In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning: If for each k >= 1, (depth-d)-C[n^k] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2^n/n^{omega(1)}, then for each k >= 1, BPE is not contained in (depth-d)-C[n^k]. If for some epsilon > 0 there are P-natural proofs useful against C[2^{n^{epsilon}}], then ZPEXP is not contained in C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes: If there is a k > 0 such that BPE is contained in i.o.Circuit[n^k], then BPEXP is contained in i.o.EXP/O(log(n)). If ZPEXP is contained in i.o.Circuit[2^{n/3}], then ZPEXP is contained in i.o.ESUBEXP. Hardness Results for MCSP: All functions in non-uniform NC^1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC^0 circuits. In particular, if MCSP is in TC^0 then NC^1 = TC^0

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity
    corecore