1 research outputs found

    ํ•ด๋ฐ€ํ„ด ๊ตฌ์กฐ์™€ ์™ธ๋ž€ ๊ด€์ธก๊ธฐ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ๋ผ๊ทธ๋ž‘์ฃผ ์  ๊ถค๋„ ์ฃผ๋ณ€์—์„œ์˜ ๊ฒฝ๊ณ„ ์ƒ๋Œ€ ์šด๋™ ๋ฐ ๊ถค๋„์œ ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๊น€์œ ๋‹จ.In this dissertation, a novel strategy for station-keeping and formation flight of spacecraft in the vicinity of unstable libration point orbits is presented, and its performance and stability are analyzed. The presented control strategy leverages the Hamiltonian nature of the equations of motion, rather than simply applying the control theory from the perspective of ``signal processing". A filtered extended high-gain observer, a kind of disturbance observer, is designed to mitigate the performance degradation of the control strategy due to model uncertainties and external disturbances. Canonical coordinates are adopted to design a controller that exploits the mathematical structure of Hamiltonian system inherent in orbital mechanics, and then the equations of motion of spacecraft are represented in the form of Hamilton's equation with generalized coordinates and momenta. The baseline controller, utilizing the canonical form of the Hamiltonian system, is divided into two parts: i) a Hamiltonian structure-preserving control, and ii) an energy dissipation control. Hamiltonian structure-preserving control can be designed in accordance with the Lagrange-Dirichlet criterion, i.e., a sufficient condition for the nonlinear stability of Hamiltonian system. Because the Hamiltonian structure-preserving control makes the system marginally stable instead of asymptotically stable, the resultant motion of the Hamiltonian structure-preserving control yields a bounded trajectory. Through the frequency analysis of bounded relative motion, a circular motion can be achieved for particular initial conditions. By appropriately switching the gain of the Hamiltonian structure-preserving control, the radius of bounded motion can be adjusted systematically, which is envisioned that this approach can be applied to spacecraft formation flight. Furthermore, the energy dissipation control can be activated to make the spacecraft's bounded relative motion converge to the nominal orbit. On the other hand, a filtered extended high-gain observer is designed for the robust station-keeping and formation flight even under highly uncertain deep-space environment. The filtered extended high-gain observer estimates the velocity state of the spacecraft and disturbance acting on the spacecraft by measuring only the position of the spacecraft. The filtered extended high-gain observer includes an integral state feedback to attenuate navigation error amplification due to the high gain of the observer. The global convergence of the observer is shown, and it is also shown that the tracking error is ultimately bounded to the nominal libration point orbit by applying the Hamiltonian structure-based controller. Numerical simulations demonstrate the performance of the designed control strategy. Halo orbit around the L2 point of the Earth-Moon system is considered as an illustrative example, and various perturbations are taken into account.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ถˆ์•ˆ์ •ํ•œ ๋™์ ํŠน์„ฑ์„ ๊ฐ–๋Š” ๋ผ๊ทธ๋ž‘์ฃผ ์  ๊ถค๋„ ์ฃผ๋ณ€์—์„œ ์œ„์„ฑ์˜ ๊ถค๋„์œ ์ง€ ๋ฐ ํŽธ๋Œ€๋น„ํ–‰์„ ์œ„ํ•œ ์ œ์–ด๊ธฐ์™€ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€์œผ๋ฉฐ, ์„ค๊ณ„๋œ ์ œ์–ด๊ธฐ์™€ ๊ด€์ธก๊ธฐ์˜ ์•ˆ์ •์„ฑ ๊ทธ๋ฆฌ๊ณ  ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์„ค๊ณ„ํ•œ ๊ธฐ์ค€ ์ œ์–ด ์ „๋žต์€ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๊ด€์ ์˜ ์ œ์–ด์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์ง€ ์•Š๊ณ , ๋ผ๊ทธ๋ž‘์ฃผ ์  ๊ถค๋„์˜ ์ž์—ฐ์ ์ธ ์ˆ˜ํ•™์  ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋ชจ๋ธ ๋ถˆํ™•์‹ค์„ฑ๊ณผ ์™ธ๋ถ€ ์™ธ๋ž€์œผ๋กœ ์ธํ•œ ๊ธฐ์ค€ ์ œ์–ด ์ „๋žต์˜ ์„ฑ๋Šฅ์ €ํ•˜๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ž€๊ด€์ธก๊ธฐ์˜ ์ผ์ข…์ธ ํ™•์žฅ ๊ณ ์ด๋“ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ถค๋„์—ญํ•™์— ๋‚ด์žฌ๋˜์–ด ์žˆ๋Š” ํ•ด๋ฐ€ํ„ด ์‹œ์Šคํ…œ์˜ ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ์ œ์–ด๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด ์ •์ค€์ขŒํ‘œ๋ฅผ ๋„์ž…ํ•˜์˜€์œผ๋ฉฐ, ์ขŒํ‘œ๋ณ€ํ™˜์„ ํ†ตํ•ด ์œ„์„ฑ์˜ ์šด๋™๋ฐฉ์ •์‹์„ ํ•ด๋ฐ€ํ„ด ์‹œ์Šคํ…œ์˜ ์ •์ค€ํ˜•์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ํ•ด๋ฐ€ํ„ด ์‹œ์Šคํ…œ์˜ ์ •์ค€ํ˜•์‹์œผ๋กœ ํ‘œํ˜„๋œ ์šด๋™๋ฐฉ์ •์‹์„ ์ด์šฉํ•ด ์„ค๊ณ„ํ•œ ๊ธฐ์ค€ ์ œ์–ด๊ธฐ๋Š” ํ•ด๋ฐ€ํ„ด-๊ตฌ์กฐ ๋ณด์กด์ œ์–ด์™€ ์—๋„ˆ์ง€ ์†Œ์‚ฐ์ œ์–ด๋กœ ๋ถ„๋ฆฌ ์„ค๊ณ„๋œ๋‹ค. Lagrange-Dirichlet ๊ธฐ์ค€์€ ์ •์ค€ํ˜•์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ธ ํ•ด๋ฐ€ํ„ด ์‹œ์Šคํ…œ์˜ ๋น„์„ ํ˜• ์•ˆ์ •์„ฑ์„ ํŒ๋ณ„ํ•˜๋Š” ์ถฉ๋ถ„์กฐ๊ฑด์œผ๋กœ, ํ•ด๋ฐ€ํ„ด-๊ตฌ์กฐ ๋ณด์กด์ œ์–ด ์„ค๊ณ„์˜ ๊ธฐ์ค€์ด ๋œ๋‹ค. ๊ธฐ์ค€ ๋ผ๊ทธ๋ž‘์ฃผ ์  ๊ถค๋„ ์ฃผ์œ„์—์„œ ํ•ด๋ฐ€ํ„ด-๊ตฌ์กฐ ๋ณด์กด ์ œ์–ด๋ฅผ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, ์œ„์„ฑ์€ ๊ธฐ์ค€๊ถค๋„๋กœ ์ˆ˜๋ ดํ•˜์ง€ ์•Š๊ณ  ๊ธฐ์ค€๊ถค๋„์™€ ์œ ํ•œํ•œ ๊ฑฐ๋ฆฌ๋ฅผ ์œ ์ง€ํ•˜๋Š” ๊ฒฝ๊ณ„์šด๋™์„ ํ•˜์˜€๋‹ค. ๊ฒฝ๊ณ„์šด๋™์˜ ์ฃผํŒŒ์ˆ˜ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ํŠน์ •ํ•œ ์ดˆ๊ธฐ์กฐ๊ฑด ํ•˜์—์„œ๋Š” ์›ํ˜• ๊ฒฝ๊ณ„์šด๋™์ด ๊ฐ€๋Šฅํ•˜์˜€์œผ๋ฉฐ, ๋” ๋‚˜์•„๊ฐ€ ํ•ด๋ฐ€ํ„ด-๊ตฌ์กฐ ๋ณด์กด์ œ์–ด์˜ ์ œ์–ด์ด๋“ ๊ฐ’์„ ์ ์ ˆํžˆ ์„ค์ •ํ•จ์œผ๋กœ ์›ํ˜• ๊ฒฝ๊ณ„์šด๋™์˜ ํฌ๊ธฐ๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ณ  ์ด๋ฅผ ์œ„์„ฑ ํŽธ๋Œ€๋น„ํ–‰์— ์‘์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์—๋„ˆ์ง€ ์†Œ์‚ฐ์ œ์–ด ์ž…๋ ฅ์„ ์„ค๊ณ„ํ•˜์—ฌ ์œ„์„ฑ์ด ๊ธฐ์ค€ ๋ผ๊ทธ๋ž‘์ฃผ ์  ๊ถค๋„๋กœ ์ ๊ทผ ์ˆ˜๋ ดํ•˜๋Š” ์šด๋™๋„ ๊ฐ€๋Šฅํ•จ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ํ•œํŽธ, ์‹ฌ์šฐ์ฃผ์ƒ์˜ ์˜ˆ์ธกํ•˜๊ธฐ ์–ด๋ ค์šด ์„ญ๋™๋ ฅ ๋ฐ ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ๋„ ๊ฐ•๊ฑดํ•œ ๊ถค๋„์œ ์ง€์™€ ํŽธ๋Œ€๋น„ํ–‰์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ™•์žฅ ๊ณ ์ด๋“ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ํ™•์žฅ ๊ณ ์ด๋“ ๊ด€์ธก๊ธฐ๋Š” ์œ„์„ฑ์˜ ์œ„์น˜ ์ •๋ณด๋งŒ์„ ์ด์šฉํ•˜์—ฌ ์œ„์„ฑ์˜ ์†๋„์™€ ์œ„์„ฑ์— ์ž‘์šฉํ•˜๋Š” ์™ธ๋ž€์„ ๋™์‹œ์— ์ถ”์ •ํ•˜๋ฉฐ, ์ถ”์ •๋œ ์ƒํƒœ๋ณ€์ˆ˜๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ์ค€์ด ๋˜๋Š” ํ”ผ๋“œ๋ฐฑ ์ œ์–ด์ž…๋ ฅ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ถ”์ •๋œ ์™ธ๋ž€์€ ํ”ผ๋“œํฌ์›Œ๋“œ ํ˜•ํƒœ์˜ ์ œ์–ด์ž…๋ ฅ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์ œ์–ด๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๊ฐ•๊ฑดํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์‹ฌ์šฐ์ฃผ ๊ณต๊ฐ„์ƒ์˜ ์œ„์„ฑ์˜ ๊ถค๋„๊ฒฐ์ • ๊ฒฐ๊ณผ๋กœ ์–ป์–ด์ง€๋Š” ์œ„์น˜์ •๋ณด๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ํฐ ์˜ค์ฐจ๋ฅผ ๊ฐ–๋Š”๋ฐ, ํ™•์žฅ ๊ณ ์ด๋“ ๊ด€์ธก๊ธฐ๋Š” ์œ„์น˜ ์˜ค์ฐจ๋ฅผ ์ฆํญ์‹œํ‚จ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ์™„ํ™”ํ•˜๊ณ ์ž ์ ๋ถ„ ๊ด€์ธก๊ธฐ ํ˜•ํƒœ๋กœ ๊ฐœ์„ ๋œ ํ•„ํ„ฐ๋ง๋œ ํ™•์žฅ ๊ณ ์ด๋“ ๊ด€์ธก๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ์ˆ˜๋ ด์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•„ํ„ฐ๋ง๋œ ํ™•์žฅ ๊ณ ์ด๋“ ๊ด€์ธก๊ธฐ์™€ ์‹œ์Šคํ…œ์˜ ํ•ด๋ฐ€ํ„ด ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ์ œ์–ด๊ธฐ๋ฅผ ์ ์šฉํ•œ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ถˆ์•ˆ์ •ํ•œ ๋ผ๊ทธ๋ž‘์ฃผ ์  ๊ถค๋„ ์ฃผ๋ณ€์—์„œ ์œ„์„ฑ์˜ ๊ถค๋„์œ ์ง€์™€ ํŽธ๋Œ€๋น„ํ–‰์„ ์œ„ํ•ด ์„ค๊ณ„๋œ ์ œ์–ด๊ธฐ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ณ ์ž ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์œ„ํ•ด ์ง€๊ตฌ-๋‹ฌ ์‹œ์Šคํ…œ์˜ L2 ์ฃผ๋ณ€ ํ—ค์ผ๋กœ ๊ถค๋„๋ฅผ ๊ธฐ์ค€๊ถค๋„๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์‹ฌ์šฐ์ฃผ ๊ณต๊ฐ„์—์„œ์˜ ๋‹ค์–‘ํ•œ ์„ญ๋™๋ ฅ ๋ฐ ๋ชจ๋ธ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ ๋ คํ•˜์˜€๋‹ค. ๊ถค๋„๊ฒฐ์ • ์˜ค์ฐจ๋กœ ์ธํ•œ ์œ„์„ฑ์˜ ์œ„์น˜ ๋ฐ ์†๋„ ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌ ํ•˜๋”๋ผ๋„ ์ œ์•ˆํ•œ ์ œ์–ด๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์œ„์„ฑ์ด ๊ถค๋„์œ ์ง€์™€ ํŽธ๋Œ€๋น„ํ–‰์„ ๋งŒ์กฑ์Šค๋Ÿฝ๊ฒŒ ์ˆ˜ํ–‰ํ•จ์„ ๋ณด์˜€๋‹ค.1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.2.1 Spacecraft Station-Keeping in the Vicinity of the Libration Point Orbits 3 1.2.2 Spacecraft Formation Flight in the Vicinity of the Libration Point Orbits 5 1.3 Contributions 7 1.4 Dissertation Outline 10 2 Background 13 2.1 Circular Restricted Three-Body Problem 14 2.1.1 Equilibrium Solutions and Periodic Orbits 16 2.1.2 Stability of Periodic Orbits 20 2.2 Hamiltonian Mechanics 21 2.2.1 Hamiltonian Approach to CR3BP 21 2.2.2 Hamiltonian Approach to LPO Tracking Problem 22 3 Hamiltonian Structure-Based Control 25 3.1 Classical Linear Hamiltonian Structure-Preserving Control 27 3.2 Switching Hamiltonian Structure-Preserving Control 29 3.2.1 Orbital Properties of Spacecraft 33 3.2.2 Switching Point 1: From a Circular Orbit to an Elliptical Orbit 34 3.2.3 Switching Point 2: From an Elliptical Orbit to a Circular Orbit 37 3.3 Hamiltonian Structure-Based Control 39 3.3.1 Potential Shaping Control 39 3.3.2 Energy Dissipation Control 45 4 Filtered Extended High-Gain Observer and Closed-Loop Stability 49 4.1 Filtered Extended High-Gain Observer and Its Convergence 51 4.2 Closed-Loop Stability Analysis 56 5 Numerical Simulations 67 5.1 Disturbance Model 67 5.2 Navigation Error Model 68 5.3 Simulation Results 69 5.3.1 Simulation 1 71 5.3.2 Simulation 2 77 5.3.3 Simulation 3 81 5.3.4 Simulation 4 93 5.3.5 Simulation 5 98 6 Conclusion 101 6.1 Concluding Remarks 101 6.2 Further Work 103 Bibliography 105 ๊ตญ๋ฌธ์ดˆ๋ก 127Docto
    corecore