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Abstract

Bounded Relative Motion and Station-Keeping

in the Vicinity of Libration Point Orbits

Leveraging Hamiltonian Structure

and Disturbance Observer Technique

Seungyun Jung

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

In this dissertation, a novel strategy for station-keeping and formation flight

of spacecraft in the vicinity of unstable libration point orbits is presented, and its

performance and stability are analyzed. The presented control strategy lever-

ages the Hamiltonian nature of the equations of motion, rather than simply

applying the control theory from the perspective of “signal processing”. A fil-

tered extended high-gain observer, a kind of disturbance observer, is designed

to mitigate the performance degradation of the control strategy due to model

uncertainties and external disturbances.

Canonical coordinates are adopted to design a controller that exploits the

mathematical structure of Hamiltonian system inherent in orbital mechanics,

and then the equations of motion of spacecraft are represented in the form

of Hamilton’s equation with generalized coordinates and momenta. The base-
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line controller, utilizing the canonical form of the Hamiltonian system, is di-

vided into two parts: i) a Hamiltonian structure-preserving control, and ii)

an energy dissipation control. Hamiltonian structure-preserving control can be

designed in accordance with the Lagrange-Dirichlet criterion, i.e., a sufficient

condition for the nonlinear stability of Hamiltonian system. Because the Hamil-

tonian structure-preserving control makes the system marginally stable instead

of asymptotically stable, the resultant motion of the Hamiltonian structure-

preserving control yields a bounded trajectory. Through the frequency analysis

of bounded relative motion, a circular motion can be achieved for particu-

lar initial conditions. By appropriately switching the gain of the Hamiltonian

structure-preserving control, the radius of bounded motion can be adjusted sys-

tematically, which is envisioned that this approach can be applied to spacecraft

formation flight. Furthermore, the energy dissipation control can be activated

to make the spacecraft’s bounded relative motion converge to the nominal orbit.

On the other hand, a filtered extended high-gain observer is designed for

the robust station-keeping and formation flight even under highly uncertain

deep-space environment. The filtered extended high-gain observer estimates

the velocity state of the spacecraft and disturbance acting on the spacecraft by

measuring only the position of the spacecraft. The filtered extended high-gain

observer includes an integral state feedback to attenuate navigation error am-

plification due to the high gain of the observer. The global convergence of the

observer is shown, and it is also shown that the tracking error is ultimately

bounded to the nominal libration point orbit by applying the Hamiltonian

structure-based controller.

Numerical simulations demonstrate the performance of the designed control

ii



strategy. Halo orbit around the L2 point of the Earth-Moon system is considered

as an illustrative example, and various perturbations are taken into account.

Keywords: Libration Point Orbit, Unstable Orbit, Non-Keplerian Orbit, Station-

Keeping, Spacecraft Formation Flight, Hamiltonian System, Extended High-

Gain Observer

Student Number: 2015-20790
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Chapter 1

Introduction

1.1 Background and Motivation

As a new era of space exploration begins, various challenging space mis-

sions are being planned in several space agencies, e.g., Europa Clipper [1],

Martian Moons Exploration (MMX) [2], and Comet Interceptor [3]. To suc-

cessfully accomplish those challenging deep-space exploration missions, creative

and advanced technologies should be developed. Mission design, guidance, nav-

igation, and control are the areas where further technological development is

required [4–6].

One of the great obstacles to deep-space exploration is the large amount of

propellant consumption required to escape the Earth’s gravity. There is signif-

icant limitation to the distance that can be reached using remaining fuel after

escaping the Earth’s gravity. To overcome this difficulty (of course this is not

the only reason), the National Aeronautics and Space Administration (NASA)

is working on a Lunar Gateway mission, a part of the Artemis program [7]. The

Artemis employs a Gateway station in cis-lunar space, specifically in a Near

Rectilinear Halo Orbit (NRHO) of the Earth-Moon system’s L2 point, which

serves as a pressurized environment for astronaut crews as well as a staging
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location for missions to other destinations, e.g., Mars, Asteroids, Distant Ret-

rograde Orbits, and others. The NRHOs are subclass of halo orbit family, whose

stability indices are stable or close-to-stable. Due to their stability character-

istics, these orbits are potentially useful for the placement of Lunar Gateway

for deep-space exploration. Although the stability indices of nominal NRHOs

are stable or close-to-stable, NRHOs are not stable in reality due to the effects

of forces of other celestial bodies and solar radiation. For this reason, active

control techniques should be developed to keep the spacecraft on the desired

orbit [8].

Libration point orbits (LPOs) have been studied for a long time because they

exist in various binary systems in space, e.g., Sun-Earth system, Sun-Jupiter

system, and binary asteroid system [9]. The interest on the LPOs has soared

after Farquhar shed light on the availability of these orbits [10]. Trajectories

leveraging the LPOs and the associated invariant manifolds allow the space-

craft transfers within the cis-lunar region for lower costs, and therefore many

different space missions have been planned using these orbits [3,11–14]. Among

these missions, not only single spacecraft missions but also missions involving

multiple spacecraft are planned [15, 16]. More recently, advanced missions uti-

lizing LPO have been studied, including the construction of a lunar far side

surface navigation system [17, 18] and an advanced satellite constellation [19].

Therefore, research on the formation flight of multiple spacecraft as well as the

station-keeping strategy in the vicinity of unstable LPO is needed. In this dis-

sertation, a novel way of station-keeping and formation flight is presented to

prepare upcoming deep-space missions.
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1.2 Literature Review

1.2.1 Spacecraft Station-Keeping in the Vicinity of the Libra-

tion Point Orbits

Station-keeping strategies can be divided into two categories [20]: One is to

leverage the geometrical structure of the phase space around an orbit, and the

other is to use the advanced control theory.

In the first approach, the station-keeping technique leveraging the geometri-

cal structure of the phase space makes use of the dynamic characteristics of the

circular restricted 3-body problem (CR3BP). Because the dynamic instability

of LPO originates from the unstable manifold in the phase space, a controller is

designed to cancel out the unstable mode. Accordingly, the control strategy is

straightforward and can be considered to be fuel efficient because it compensates

only the components causing the motion unstable. Furthermore, this approach

offers a new perspective to exploit the inherent dynamic characteristics of the

target system in designing the controller. For example, Simo et al. [21] proposed

a station-keeping strategy that cancels out the unstable Floquet mode around

the halo orbit of the Sun-Earth system. Farres and Jorba [22, 23] analysed the

dynamic modes considering the solar radiation pressure, and a station-keeping

strategy was proposed to utilize these dynamic modes. Similarly, paying at-

tention to the intrinsic Hamiltonian nature of the CR3BP, Scheeres et al. [24]

proposed a Hamiltonian structure-preserving control scheme by utilizing the

center manifold of the Hamiltonian system. In spite of these advantages and

the possibility of new inspiration for the control methodology, Shirobokov et

al. [20] pointed out that it is necessary to improve robustness because the per-

formance of the station-keeping strategy included in this category is somewhat
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sensitive to the model uncertainty.

There also have been much research on the second approach of the station-

keeping strategy, i.e., the station-keeping technique based on the advanced con-

trol theory. It is beneficial because each control theory guarantees the perfor-

mance as well as the stability of the system. In particular, among various control

theories, a robust control theory guaranteeing the control performance under

uncertainties is appropriate for deep-space missions. This is because it is diffi-

cult to fully identify the deep-space environment in advance [25]. For example,

a discrete-time sliding mode controller was designed for station-keeping on the

LPO of the Earth-Moon system considering the solar system model [26], and

a H∞ control theory was applied to design a controller [27]. More recently, an

active disturbance rejection control scheme was applied for station-keeping to

estimate and compensate for the effects of disturbances [28–30], and nonlinear

output regulation theory was applied to this problem [31,32]. Notwithstanding

these satisfactory results, there exist several issues to be solved in the station-

keeping strategies based on the robust control theory. For instance, the previ-

ously mentioned sliding mode control technique or H∞ control technique must

know the adequate upper bound of the model uncertainty to achieve satisfac-

tory control performance, which is difficult to achieve in advance, especially in

the deep-space. Conservative specification of the upper bound of uncertainty

would sacrifice orbit tracking performance, and the opposite may threaten the

stability. On top of that, control theory-based techniques have not been able to

exploit the inherent dynamics of LPOs because they approached the station-

keeping problem with the framework of “signal processing”, and such limitation

needs to be addressed.
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In summary, the two types of LPO station-keeping strategies have both ad-

vantages and disadvantages. If two different strategies are complementarily and

efficiently applied together, it would be possible to maintain a more effective

station-keeping. However, no studies have applied the two different categories

of station-keeping strategies together. In this dissertation, the two different ap-

proaches to the LPO station-keeping strategies are combined to exploit the

advantages of each method. More specifically, a station-keeping strategy is pro-

posed that overcomes the vulnerability to the uncertainty with the help of

robust control techniques while fully exploiting the geometric structure of the

phase space around the LPO. For more comprehensive survey on the station-

keeping technique for LPO, refer to Ref. [20].

1.2.2 Spacecraft Formation Flight in the Vicinity of the Libra-

tion Point Orbits

The concept of spacecraft formation flight in the vicinity of LPO has been

discussed for a long time to accomplish high-resolution deep-space observation

missions, but unfortunately most of the missions have been cancelled, which

include Micro-Arcsecond X-ray Imaging Mission (MAXIM) [33], Terrestrial

Planet Finder (TPF) [34], and Darwin [35]. Several missions are still being

planned, and the number of missions in these orbital regions are expected to

proceed because of their unique dynamic environment [36,37].

Several studies were conducted to determine the viable region for the loose

formation flight around the LPO [38–40]. Locating a formation of spacecraft in

these natural low-drift regions leads to a smaller variation in the mutual distance

between the spacecraft and the pointing direction of the formation. Triangular
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configurations providing good performance in terms of formation keeping with-

out control were also investigated [41]. Tight formation control, however, is

required during certain mission phases. For the tight formation control, various

controllers have been designed, such as time-varying linear-quadratic controller

[42], feedback-linearization-based controller [43], nonlinear adaptive neural net-

work controller [44], optimal periodic controller [45], suboptimal θ − D con-

troller [46,47], output-regulation theory-based controller [31,32,48], and Kalman

filter-based linear-quadratic regulator [49]. In addition to the continuous-time

controllers designed for the spacecraft formation flight, discrete-time impul-

sive controllers were also designed [50–52]. More recently, distributed adap-

tive synchronization schemes were applied to the formation flight problem [53].

Among previous studies, Scheeres et al. presented a non-traditional, unusual

continuous-time controller that achieved relative bounded motion, like a motion

of planetary satellites, which could be applicable to the spacecraft formation

flight near an unstable LPO [24]. Because the control law proposed by Scheeres

preserves the mathematical structure of the system i.e., symplectic Hamiltonian

structure, it is called a Hamiltonian structure-preserving controller. After the

very first work of Scheeres et al., some researchers extended this control method-

ology and successfully applied to various LPO missions [54–56]. However, the

radius of the bounded motion could not be adjusted using the previous studies

on Hamiltonian structure-preserving control, which is a limitation and needs

to be addressed. In this study, a switching Hamiltonian structure-preserving

strategy is established to adjust the elliptic/circular orbit pattern of spacecraft.
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1.3 Contributions

The main contributions of this study are summarized as follows.

Switching strategy for desired relative elliptic/circular trajectory pat-

tern via Hamiltonian structure-preserving control

A switching Hamiltonian structure-preserving controller is proposed to sta-

bilize the spacecraft and make a relative circular trajectory, where its radius can

be systematically designed. The original concept of the Hamiltonian structure-

preserving control is extended to adjust the elliptic/circular orbit pattern of

the spacecraft by means of switching strategy. To achieve the desired relative

distances, relative orbital motion is analyzed and a strategy akin to Hohmann

transfer is presented.

Hamiltonian structure-based station-keeping controller for unstable

libration point orbits mission

A Hamiltonian structure-based controller, which can be used as a base-

line controller for LPO station-keeping, is presented. Canonical coordinates are

adopted to design a controller that leverages the Hamiltonian nature of the

CR3BP. The LPO tracking problem in the CR3BP is redefined as a regulation

problem in the non-autonomous Hamiltonian system in terms of tracking er-

ror state. The Hamiltonian structure-based controller consists of two parts: i) a

potential shaping control which makes the equilibrium point as an isolated min-

imum point of the tracking error Hamiltonian function without destroying the

inherent Hamiltonian structure of the system, and ii) energy dissipation control

that makes the trajectory converge to the equilibrium point, that is, the isolated
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minimum of the reshaped tracking error Hamiltonian. The overall framework

of the Hamiltonian structure-based control is the same as a control method

proposed by van der Schaft for an autonomous Hamiltonian system [57]. In

this study, the original framework is modified and applied to a nonautonomous

Hamiltonian system. Furthermore, the relation between the existing Hamilto-

nian structure-preserving controller and the proposed controller is discussed.

Filtered extended high-gain observer and stability analysis

A filtered extended high-gain observer with improved noise filtering for

deep-space environments, which yields a relatively large navigation error, is

presented. The deep-space environment is highly uncertain, and therefore dy-

namic system cannot be represented as an exact Hamiltonian system. The real

system is a “perturbed” Hamiltonian system subject to unmodeled dynamics,

external disturbances, and parameter uncertainties. Therefore, performance of

the nominal controller may be degraded. To address this problem, the extended

high-gain observer technique is adopted to estimate disturbances [58,59]. How-

ever, a drawback of the high-gain observer is the severe noise amplification due

to high observer gain in the presence of measurement noise [60–63]. Notably,

navigation errors become very large in deep-space such as LPOs environment,

and therefore the problem of navigation error amplification becomes worse when

the extended high-gain observer is used. In this study, to attenuate the mea-

surement noise amplification of the standard extended high-gain observer, an

enhanced version of the extended high-gain observer, that is, filtered extended

high-gain observer using an integral state feedback [64], is proposed, and its

convergence is proven. Furthermore, the stability of the integrated closed-loop

8



system is analyzed.
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1.4 Dissertation Outline

The organization of this study is as follows.

• Chapter 2: Background

The equations of motion are described for the CR3BP. The equilibrium

solutions, periodic solutions, and stability are discussed. The Hamiltonian

formalism is adopted to analyze the system.

• Chapter 3: Hamiltonian Structure-Based Control

Two novel control strategies leveraging the Hamiltonian nature of the sys-

tem are presented. The switching Hamiltonian structure-preserving con-

trol is derived, and its application to spacecraft formation flight around

the LPO is discussed. More general control law is derived for Hamiltonian

canonical coordinates space, and its application to LPO station-keeping

is presented.

• Chapter 4: Filtered Extended High-Gain Observer and Closed-Loop Sta-

bility

Filtered extended high-gain observer is designed for state and disturbance

estimation. An integral state feedback is used to filter out the effects of

measurement noise. Estimation error convergence analysis is conducted,

and the estimation error bounds between typical extended high-gain ob-

server and filtered extended high-gain observer are compared. Further-

more, the stability of entire closed-loop system is analyzed and the LPO

tracking error bound is given.
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• Chapter 5: Numerical Simulations

Numerical simulations are performed to demonstrate the performance of

the proposed controller and observer. To support the effectiveness of the

proposed control scheme, various simulation scenarios are taken into ac-

count.

• Chapter 6: Conclusion

This chapter summarizes the main results of this study and provides sug-

gestions for future work.
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Chapter 2

Background

This chapter describes a Circular Restricted Three-Body Problem (CR3BP),

equilibrium solution, periodic orbit, and stability. To understand the stability of

motion, the equations of motion are analyzed using Hamiltonian formulations.

In this study, the three-dimensional CR3BP is adopted to investigate the

motion of a spacecraft. This problem represents a system where two astronom-

ical bodies significantly influence the motion of the third body with negligible

mass compared with them. Examples include spacecraft motion in the Earth-

Moon and Sun-Earth systems, as well as binary asteroid systems. Though the

CR3BP is a simplified model, this model offers valuable insight into the funda-

mental motions within multi-body systems. Therefore, the CR3BP will serve

as a stepping stone to a full n-body problem.
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2.1 Circular Restricted Three-Body Problem

In the CR3BP, the motion of a spacecraft is influenced by the gravita-

tional attraction of two massive bodies. The primary body, for example, is the

Earth and the secondary body is the Moon, which is defined as the Earth-Moon

system. A third body, that is, the spacecraft, is assumed to be massless, and

therefore the orbital motions of the two primaries are not affected by the third

body. It is further assumed that the two primaries move in circular orbits with

respect to the barycenter, and their angular velocity Ωf = [0, 0,Ωf ]T ∈ R3×1 is

constant. In the standard formulation of the CR3BP, the motion of the space-

craft is described relative to a coordinate frame that rotates with the two pri-

maries. The rotating x-axis is directed from the Earth to the Moon, the z-axis

is normal to the plane of motion of the primaries, and the y-axis completes

the right-handed triad. In general, the quantities in the CR3BP are normalized

such that the distance between two primaries as well as the angular velocity

of the two primaries are both equal to unity. Also, a normalized mass unit is

M = m1 + m2, where mi are the masses of the two primaries. By defining

a mass ratio µ = m2/M , the location of each primary can be expressed as

[µ, 0, 0]T and [1−µ, 0, 0]T . The rotating frame is illustrated in Fig. 2.1, and the

nondimensional equations of motion are expressed in terms of rotating frame

coordinates as [65–67]

ẍ− 2Ωf ẏ − Ω2
fx = −(1− µ)(x+ µ)

r3
1

− µ(x− 1 + µ)

r3
2

(2.1a)

ÿ + 2Ωf ẋ− Ω2
fy = −(1− µ)y

r3
1

− µy

r3
2

(2.1b)

z̈ = −(1− µ)z

r3
1

− µz

r3
2

(2.1c)
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Figure 2.1 Geometry of the CR3BP.

where (x, y, z) are the components of spacecraft position, and r1 =
√

(x+ µ)2 + y2 + z2

and r2 =
√

(x− 1 + µ)2 + y2 + z2 are nondimensional distances between the

spacecraft and two primaries, respectively. Note that all derivatives are evalu-

ated with respect to a rotating observer.

Now, let us consider the following pseudo-potential function U(r),

U(r) = −V (r)− Φ(r) (2.2)

where r = [x, y, z]T ∈ R3×1 denotes a position vector of spacecraft, V (r) is

the non-dimensional gravitational potential function of the two primaries, and

Φ(r) is the non-dimensional potential due to the rotation of the reference frame,

which are defined as follows,

V (r) = −1− µ
r1
− µ

r2
(2.3)

Φ(r) = −1

2
(Ωf × r) · (Ωf × r) (2.4)
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Then, Eq. (2.1) can be written more compactly as

ẍ− 2Ωf ẏ = ∇xU(r) (2.5a)

ÿ + 2Ωf ẋ = ∇yU(r) (2.5b)

z̈ = ∇zU(r) (2.5c)

More details about the derivation of CR3BP can be found in [65–67].

2.1.1 Equilibrium Solutions and Periodic Orbits

If the CR3BP is formulated in terms of the rotating frame, it is possi-

ble to identify five equilibrium solutions, i.e., libration points, which include

three collinear points (L1,L2,L3) and two equilateral points (L4,L5). For the

Earth-Moon system, the eigenvalues corresponding to the collinear libration

points indicate that these points possess a topological structure of the type

saddle×center×center. Two pairs of imaginary roots indicate that the center

subspace is four-dimensional and oscillatory behavior exists in the vicinity of

the libration point for the linear system. Furthermore, the existence of periodic

and quasi-periodic orbits still persists in nonlinear models [68–70]. These peri-

odic and quasi-periodic orbits are called libration point orbits (LPOs), which

will be the gateway to the various future deep-space missions [7,10,13,15,71,72].

Sample solutions of periodic orbit in the vicinity of the L1 and L2 are shown

in Figs. 2.2 ∼ 2.4. To design nominal orbits, single or multiple differential cor-

rection algorithms were employed [73,74].
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Figure 2.2 Sample member from the L1andL2 families of planar lyapunov orbits

in the Earth-Moon system
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Figure 2.3 Sample member from the L1 families of halo orbits in the Earth-

Moon system
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Figure 2.4 Sample member from the L2 families of halo orbits in the Earth-

Moon system
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2.1.2 Stability of Periodic Orbits

To determine the stability of a periodic orbit, linearly approximated equa-

tion of motion can be used. Consider the position vector r = [x, y, z]T ∈ R3×1

and velocity vector ṙ = [ẋ, ẏ, ż]T ∈ R3×1 of the spacecraft. Likewise, a reference

LPO can be defined as rr = [xr, yr, zr]
T ∈ R3×1 with velocity ṙr = [ẋr, ẏr, żr]

T ∈

R3×1. Then, linear variational equation along the reference LPO can be defined

as

d

dt

r− rr

ṙ− ṙr

 =

 03 I3

∇2
rrU(rr) 2ΩfJ

r− rr

ṙ− ṙr

 (2.6)

where

J =


0 1 0

−1 0 0

0 0 0

 (2.7)

Note that the term ∇2
rrU(rr) depends on the reference orbit rr. That is, it has

a periodic value, and therefore Eq. (2.6) is a linear time-periodic equation.

Poincare map or stroboscopic map is a useful tool for analysis of the swirling

flows, such as the flow near a periodic orbit [75]. And the linearized Poincare

map can be defined by the monodromy matrix Φ(T, 0), i.e., the state transition

matrix with the fixed point for one period (T ) of the orbit. Accordingly, the

monodromy matrix of Eq. (2.6) can be used to evaluate the stability of the

reference orbit. The monodromy matrix of the periodic orbit has eigenvalues

that occur in reciprocal pairs. More specifically, periodic orbit possesses at least

one pair of unit eigenvalues. If there exists one more pair of unit eigenvalues, a

nontrivial center manifold is predicted. In the case of L2 halo orbit families of the

Earth-Moon system, most monodromy matrix has at least one reciprocal pair
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of real eigenvalues λs = 1/λu. Accordingly, most halo orbit is unstable, and the

uncontrolled motion will diverge from the orbit because of the presence of the

unstable manifold. A more detailed description of the eigenvalue distribution of

the monodromy matrix depending on the type of periodic orbit can be found

in [76].

2.2 Hamiltonian Mechanics

2.2.1 Hamiltonian Approach to CR3BP

A Hamiltonian system is defined as a set of 2n differential equations written

as [77] q̇

ṗ

 =

 0n In

−In 0n

∂H(q,p,t)
∂q

T

∂H(q,p,t)
∂p

T

 (2.8)

Equation (2.8) is known as the Hamilton’s equation with generalized coordi-

nates q, generalized momenta p, and a Hamiltonian function H(q,p, t). If the

Hamiltonian function is not explicitly time dependent, i.e.,H(q,p, t) = H(q,p),

then the value of the Hamiltonian is constant, where the constant equals the

total energy of the system.

According to Hamiltonian formalism, the CR3BP can be classified as an

autonomous Hamiltonian system. Thus, the equations of motion in the CR3BP,

Eq. (2.5), can be derived using Lagrangian and Legendre transformation. The

Lagrangian of the CR3BP is defined as follows,

L(r, ṙ) = K(r, ṙ)− V (r)

=
1

2
{(ẋ− Ωfy)2 + (ẏ + Ωfx)2 + z2}+

1− µ
r1

+
µ

r2

(2.9)

where K(r, ṙ) is the kinetic energy of the spacecraft in the CR3BP.
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Let us consider the following Legendre transformation with generalized co-

ordinates q = [q1, q2, q3]T ∈ R3×1 and generalized momenta p = [p1, p2, p3]T ∈

R3×1. q

p

 =

 I3 03

−ΩfJ I3

r

ṙ

 (2.10)

Then, Eq. (2.5) can be transformed into the following form of Hamilton’s canon-

ical equations.

q̇1 =
∂H
∂p1

= p1 + Ωfq2 (2.11a)

q̇2 =
∂H
∂p2

= p2 − Ωfq1 (2.11b)

q̇3 =
∂H
∂p3

= p3 (2.11c)

ṗ1 = −∂H
∂q1

= Ωfp2 −
(1− µ)(q1 + µ)

r3
1

− µ(q1 − 1 + µ)

r3
2

(2.11d)

ṗ2 = −∂H
∂q2

= −Ωfp1 −
(1− µ)q2

r3
1

− µq2

r3
2

(2.11e)

ṗ3 = −∂H
∂q3

= −(1− µ)q3

r3
1

− µq3

r3
2

(2.11f)

with the following Hamiltonian function.

H(q,p) = pT q̇− L(q, q̇)

=
1

2
pTp + Ωfp

TJq + V (q)

=
1

2
(p2

1 + p2
2 + p2

3) + Ωf (p1q2 − p2q1)− 1− µ
r1
− µ

r2

(2.12)

where r1 =
√

(q1 + µ)2 + q2
2 + q2

3, and r2 =
√

(q1 − 1 + µ)2 + q2
2 + q2

3.

2.2.2 Hamiltonian Approach to LPO Tracking Problem

Let us consider a reference LPO that can be defined as rr with velocity ṙr.

The corresponding generalized coordinates/momenta can be defined as qr =
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[qr1 , qr2 , qr3 ]T ∈ R3×1, and pr = [pr1 , pr2 , pr3 ]T ∈ R3×1, respectively. Since LPOs

are one of the solutions to the CR3BP, they are also governed by the Hamilton’s

equations with the following Hamiltonian function.

H(qr,pr) = pTr q̇r − L(qr, q̇r)

=
1

2
pTr pr + Ωfp

T
r Jqr + V (qr)

=
1

2
(p2
r1 + p2

r2 + p2
r3) + Ωf (pr1qr2 − pr2qr1)− 1− µ

rr1
− µ

rr2

(2.13)

where rr1 =
√

(qr1 + µ)2 + q2
r2 + q2

r3 , and rr2 =
√

(qr1 − 1 + µ)2 + q2
r2 + q2

r3 .

Now, let us define the generalized tracking error coordinates/momenta be-

tween the trajectory of the spacecraft and reference LPO as eq , q−qr ∈ R3×1

and ep , p− pr ∈ R3×1, respectively. Then, the generalized tracking error co-

ordinates/momenta dynamics can be written as follows,

ėTq =
∂H(q,p)

∂p
− ∂H(qr,pr)

∂pr
(2.14a)

ėTp = −∂H(q,p)

∂q
+
∂H(qr,pr)

∂qr
(2.14b)

A tracking error Hamiltonian function can be defined as

He(eq, ep,qr,pr) , H(q,p) +H(qr,pr)

= H(eq + qr, ep + pr) +H(qr,pr)

(2.15)

Then, we have

∂He
∂eq

=
∂H(q,p)

∂eq
+
∂H(qr,pr)

∂eq

=
∂H(q,p)

∂q

∂q

∂eq
+
∂H(qr,pr)

∂qr

∂qr
∂eq

=
∂H(q,p)

∂q
− ∂H(qr,pr)

∂qr

(2.16a)
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∂He
∂ep

=
∂H(q,p)

∂ep
+
∂H(qr,pr)

∂ep

=
∂H(q,p)

∂p

∂p

∂ep
+
∂H(qr,pr)

∂pr

∂pr
∂ep

=
∂H(q,p)

∂p
− ∂H(qr,pr)

∂pr

(2.16b)

Using Eqs. (2.14) and (2.16), the generalized tracking error coordinates/momenta

dynamic equations with control input can be rewritten as

ėTq =
∂He(eq, ep,qr,pr)

∂ep
(2.17a)

ėTp = −∂He(eq, ep,qr,pr)
∂eq

+ uT (2.17b)

Note that u ∈ R3×1 represents the control input which is required to be designed

for station-keeping or formation flight. If u = 0, the tracking error dynamics be-

tween the trajectory of the spacecraft and the reference LPO can be considered

to be a non-autonomous Hamiltonian system.

In this chapter, the LPO tracking problem was redefined as a regulation

problem in the non-autonomous Hamiltonian system in terms of the tracking

error. In the following chapters, control input u will be designed to make the

errors (eq, ep) converge to zero leveraging the Hamiltonian nature of the system.
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Chapter 3

Hamiltonian Structure-Based Control

In celestial mechanics and astrodynamics, most of the dynamic problems

can be fall into a Hamiltonian system. For this reason, understanding and ex-

ploiting the physical and mathematical properties of the Hamiltonian system

have a wide range of applications in related problems [78]. In this regard, sev-

eral studies have investigated to leverage the natural center manifold of the

Hamiltonian system in spacecraft formation flight missions [79, 80]. However,

the use of the natural center manifold around LPO is restrictive because the

existence of the unstable manifold makes the center manifold practically unsta-

ble, and also the rotation frequency of the center manifold is slow compared to

the period of the LPO. To address these issues, Scheeres et al. [24] conducted

fundamental research on the spacecraft formation flight using an artificial cen-

ter manifold instead of the natural center manifold around the LPO. Since the

earliest work of Scheeres et al., the control scheme using the bounded motion

of the Hamiltonian system has been studied under the name of Hamiltonian

structure-preserving control [54–56,81–86]. Because the Hamiltonian structure-

preserving control makes the system marginally stable instead of asymptotically

stable, the resulting motion of the Hamiltonian structure-preserving control

provides a bounded trajectory like a motion of planetary satellites instead of a
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converging trajectory.

This chapter proposes two novel control strategies by extending existing

Hamiltonian structure-preserving control: i) One is a switching Hamiltonian

structure-preserving control, and ii) the other is an energy dissipation control.

Switching Hamiltonian structure-preserving control extends the original con-

cept of Hamiltonian structure-preserving control using the switching control

strategy. The proposed switching Hamiltonian structure-preserving controller

can systematically adjust the radius of orbit to the desired one, which was not

possible by the existing Hamiltonian structure-preserving controllers. Energy

dissipation control is designed to break the Hamiltonian structure by adding dis-

sipative forces. Consequently, spacecraft motion can converge to desired points

or trajectories.
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3.1 Classical Linear Hamiltonian Structure-Preserving

Control

Note that the nonlinear CR3BP as well as the linear variational equation

is a Hamiltonian system, and therefore Eq. (2.6) can be transformed into the

linear form of Hamilton’s equations using Legendre transformation, Eq. (2.10),

as

d

dt

eq

ep

 =

 I3 03

−ΩfJ I3

 03 I3

∇2
qqU(qr) 2ΩfJ

 I3 03

−ΩfJ I3

−1 eq

ep

 (3.1)

with the following Hamiltonian function.

He,2(eq, ep) =
1

2

[
eTq eTp

]03 −I3

I3 03

 I3 03

−ΩfJ I3

 03 I3

∇2
qqU(qr) 2ΩfJ

 I3 03

−ΩfJ I3

−1 eq

ep



=
1

2

[
eTq eTp

]−∇2
qqU(qr)− Ω2

fJJ −ΩfJ

ΩfJ I3

eq

ep


(3.2)

Then, the linear Hamilton’s canonical equations are expressed as

ėq1 =
∂He,2
∂ep1

= ep1 + Ωfeq2 (3.3a)

ėq2 =
∂He,2
∂ep2

= ep2 − Ωfeq1 (3.3b)

ėq3 =
∂He,2
∂ep3

= ep3 (3.3c)

ėp1 = −∂He,2
∂eq1

= Ωfep2 + (∇2
q1q1U(qr)− Ω2

f )eq1 +∇2
q1q2U(qr)eq2 +∇2

q1q3U(qr)eq3

(3.3d)
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ėp2 = −∂He,2
∂eq2

= −Ωfep1 +∇2
q1q2U(qr)eq1 + (∇2

q2q2U(qr)− Ω2
f )eq2 +∇2

q2q3U(qr)eq3

(3.3e)

ėp3 = −∂He,2
∂eq3

= ∇2
q1q3U(qr)eq1 +∇2

q2q3U(qr)eq2 +∇2
q3q3U(qr)eq3

(3.3f)

where

ep1 = −Ωfeq2 + ėq1 (3.4a)

ep2 = Ωfeq1 + ėq2 (3.4b)

ep3 = ėq3 (3.4c)

Note from Eq. (2.6) that the tracking error dynamics of spacecraft in the

vicinity of reference LPO can be written as

ër − 2ΩfJėr −∇2
rrU(rr)er = 0 (3.5)

where er , r− rr ∈ R3×1. Substituting Eq.(3.4) into Eq. (3.3) shows that Eq.

(3.3) and Eq. (3.5) are equivalent.

To stabilize the motion of spacecraft, let us consider the following control

input Tc.

Tc = Ter + Kėr (3.6)

Then, the equation of motion in the closed-loop system can be written as

ër − (2ΩfJ + K)ėr − (∇2
rrU(rr) + T)er = 0 (3.7)

From Eqs. (3.3) and (3.7), in order for the Hamiltonian structure of the system

to be maintained even after the control input is applied to the system, T must
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have the same structure as ∇2
rrU(rr), and K must have the same structure

as J. In other words, the control input conditions to preserve the symplectic

Hamiltonian structure are as follows: i) T is a symmetric matrix, and ii) K is

a skew symmetric matrix [24,87].

The controllers in the previous works [24, 54, 56] are examples of feedback

control law that satisfy the above conditions, and the specific form of con-

trol input can be found in each article. The common form of the Hamiltonian

structure-preserving control proposed in the previous studies is to compensate

for the position errors in the stable, unstable, and center eigenspace directions.

The principle of the Hamiltonian structure-preserving controller is to stabilize

the motion of spacecraft over a long time by stabilizing the relative motion over

a short time. Note that the stabilization of the relative motion over a short

term is necessary but not sufficient to ensure that the motion of the spacecraft

is stable over a long term. For this reason, long term stabilization with respect

to LPO, that is the ultimate goal of the mission, is evaluated by computing the

eigenvalues of the monodromy matrix. More details about the classical linear

Hamiltonian structure-preserving control can be found in [24,56,88].

3.2 Switching Hamiltonian Structure-Preserving Con-

trol

Because the Hamiltonian structure-preserving control makes the system

marginally stable instead of asymptotically stable, the resultant motion yields a

bounded trajectory. Due to this feature of the Hamiltonian structure-preserving

control, it is difficult to design a relative trajectory of the spacecraft. In other

words, using the Hamiltonian structure-preserving control, it is difficult to make
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the spacecraft exactly track the reference orbit. As a result, all the previous

studies have only focused on the stabilization, not the configuration of the

relative motion of spacecraft. In this section, a novel switching Hamiltonian

structure-preserving controller is proposed to overcome this limitation. More

specifically, a switching Hamiltonian structure-preserving controller is proposed

to stabilize the spacecraft and make a circular relative trajectory, where the ra-

dius of the circular relative trajectory can be systematically adjusted.

First, let us rewrite Eq. (3.7) as

ër − Sėr − Ũer = 0 (3.8)

where S , (2ΩfJ + K) and Ũ , (∇2
rrU(rr) + T). Note that the negative

definiteness of Ũ is a sufficient condition for the stability of the equilibrium

points in the linear sense. Because Ũ is only affected by the position error

feedback, the velocity error feedback is not essential to ensure stability. To

make the design of the relative trajectory of the spacecraft easy, the velocity

error feedback controller is designed to null out the Coriolis force, that is, S = 0.

In other words, the position error feedback control matrix T and velocity error

feedback control matrix K are designed as follows,

T = Ũ−∇2
rrU(rr) (3.9a)

K = −2ΩfJ (3.9b)

Then, the closed-loop system becomes

ër − Ũer = 0 (3.10)

with a negative definite matrix Ũ. Because Ũ is symmetric, it is always orthog-

onally diagonalizable as

Ũ = MΛM−1 (3.11)
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where M denotes an orthogonal eigenvector matrix of Ũ, and Λ denotes a

diagonalized matrix of Ũ. Let us define a new variable eg , M−1er. Then, Eq.

(3.10) can be rewritten as

ëg −Λeg = 0 (3.12)

where eg is a new representation of er with respect to the eigenvector matrix M.

Note from Eq. (3.12) that the relative motion of spacecraft can be understood

as a combination of three simple harmonic oscillations. Therefore, designing the

relative motion of the spacecraft implies constructing a linear combination of

three simple harmonic oscillations. Eventually, constructing a linear combina-

tion of three simple harmonic oscillations is to design matrix Λ.

For the design of matrix Λ, the relative motion of the spacecraft should be

analyzed. The relative motion of the spacecraft can be written as follows,

er(t) = M


eg1(t)

eg2(t)

eg3(t)



=
[
h̄1 h̄2 h̄3

]

eg1(t)

eg2(t)

eg3(t)


=

3∑
i=1

[egi(t)h̄i]

=
3∑
i=1

[{
Aicos(ωit) +Bisin(ωit)

}
h̄i

]

(3.13)

where Ai and Bi are constant coefficients, ω2
i is the magnitude of the eigenvalues

of Ũ, and h̄i is the orthonormal eigenvectors of the Ũ.

Hsiao et al. [89] showed that the trajectory described by each oscillation
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mode forms an elliptical orbit with the origin of frame at the center. There-

fore, the relative trajectory is a linear combination of three elliptical orbits.

Unfortunately, it is difficult to imagine the actual relative trajectories, which

are combinations of three elliptical orbits. Nevertheless, if appropriate initial

conditions and mode frequencies, i.e., the eigenvalues, are given, the resulting

relative trajectory (that is, combined result of each mode) can be an ellipti-

cal/circular orbit. If the conditions of elliptical/circular orbit are known, it is

possible to design a switching Hamiltonian-structure preserving controller us-

ing the information. With the designed switching controller, the radius of the

elliptic/circular orbit can be changed systematically. In addition, if a switching

control is applied repeatedly, the position convergence to the reference orbit

can be achieved.

Note that Liberzon et al. [90, 91] studied a basic idea of asymptotic sta-

bilization using a state-dependent switching control, and in particular, they

discussed a stabilizing switching strategy for the harmonic oscillator which is

applicable to the Hamiltonian structure-preserving controller.

In this study, the following cases are discussed: i) transfer from a circular

orbit with radius R1 to an elliptical orbit whose apsis distances are R1 and R2,

and ii) transfer from an elliptical orbit whose apsis distances are R1 and R2 to

circular orbit with radius R2. The basic concept of the switching Hamiltonian

structure-preserving control is similar to Hohmann transfer.

First, let us assume that the spacecraft rotates a circular orbit with radius

R1. At any point on the circular orbit, the spacecraft switches the Hamiltonian

structure-preserving controller to transfer to the elliptical orbit, whose apsis

distances are R1 and R2. After transferring to the elliptic orbit, the spacecraft
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switches the controller again at the other apsis to transfer to the circular or-

bit, whose radius is R2. By following these two switching steps, it is possible

to systematically resize the circular orbit of the spacecraft. For the switching

strategy, one must know the orbital properties of the spacecraft.

3.2.1 Orbital Properties of Spacecraft

Differentiating Eq. (3.13) with respect to time gives the relative velocity

vector as

ėr(t) =
3∑
i=1

[{
−Aiωisin(ωit) +Biωicos(ωit)

}
h̄i

]
(3.14)

To make a relative trajectory elliptical/circular orbit, each mode’s frequency

should be identical, i.e., ωi = ω. If the relative trajectory is an elliptical orbit,

the position and velocity vector will be perpendicular to each other at the

periapsis and apoapsis. By defining the apsis angle variable θ⊥, the following

equation holds.

er(taps) · ėr(taps) =

(
3∑

i=1

[{
Aicos(θ⊥) +Bisin(θ⊥)

}
h̄i

])

·

(
3∑

i=1

[
ω
{
−Aisin(θ⊥) +Bicos(θ⊥)

}
h̄i

])

=
ω

2

{
3∑

i=1

(
−A2

i +B2
i

)}
sin(2θ⊥) + ω

{
3∑

i=1

(
AiBi

)}
cos(2θ⊥) ≡ 0

(3.15)

Thus, we have

cos(2θ⊥) = ±

∑3
i=1

(
A2
i −B2

i

)
√√√√{∑3

i=1

(
A2
i −B2

i

)}2

+ 4

{∑3
i=1

(
AiBi

)}2
(3.16a)
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sin(2θ⊥) = ±
2

{∑3
i=1

(
AiBi

)}
√√√√{∑3

i=1

(
A2
i −B2

i

)}2

+ 4

{∑3
i=1

(
AiBi

)}2
(3.16b)

Using Eqs. (3.13) and (3.16), the square of the periapsis and apoapsis distances

can be written as follows,

|er(taps)|2 =

(
3∑
i=1

[{
Aicos(θ⊥) +Bisin(θ⊥)

}
h̄i

])
·

(
3∑
i=1

[{
Aicos(θ⊥) +Bisin(θ⊥)

}
h̄i

])

=
1

2

{
3∑
i=1

(
A2
i +B2

i

)}
±

1
2

{∑3
i=1

(
A2
i −B2

i

)}2

+ 2

{∑3
i=1

(
AiBi

)}2

√√√√{∑3
i=1

(
A2
i −B2

i

)}2

+ 4

{∑3
i=1

(
AiBi

)}2

(3.17)

Because the coefficients Ai and Bi of each mode are determined based on the

initial conditions, the distance of apsis is also determined by given initial con-

ditions.

3.2.2 Switching Point 1: From a Circular Orbit to an Elliptical

Orbit

The position and velocity of spacecraft on the circular orbit of radius R1

satisfying Eq. (3.10) with a mode frequency ω can be expressed as Eqs. (3.13)

and (3.14). Let us take the time at the switching point as t = 0. Then, the

position and velocity vector can be expressed as

er(0) =

3∑
i=1

(Aih̄i) (3.18a)

ėr(0) = ω
3∑
i=1

(Bih̄i) (3.18b)
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The objective is to transfer the spacecraft from a circular orbit to an elliptical

orbit, whose target apsis distance is R2. Figure 3.1 shows the concept of the first

switching. After switching, the equation of motion becomes Eq. (3.10) with the

new mode frequency ωα. With this switched equation of motion, the position

and velocity of the spacecraft are expressed as

er(t) =

3∑
i=1

[{
Cicos(ωαt) +Disin(ωαt)

}
h̄i

]
(3.19a)

ėr(t) =

3∑
i=1

[{
−Ciωαsin(ωαt) +Diωαcos(ωαt)

}
h̄i

]
(3.19b)

Then, we have

er(0) =
3∑
i=1

(Cih̄i) (3.20a)

ėr(0) = ωα

3∑
i=1

(Dih̄i) (3.20b)

At the switching point, the position and velocity vectors before and after switch-

ing should be identical. Therefore, following equations are obtained.

Ai = Ci (3.21a)

ωBi = ωαDi (3.21b)

In addition, if ωα = kω, where k is a real number, then Di = B/k. Under these

relations, the square of the periapsis and apoapsis distances can be expressed
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as follows,

|er(taps)|2 =
1

2

{
3∑
i=1

(
C2
i +D2

i

)}

±

[
1
2

{∑3
i=1(C2

i −D2
i )

}2

+ 2

{∑3
i=1(CiDi)

}2
]

√√√√{∑3
i=1

(
C2
i −D2

i

)}2

+ 4

{∑3
i=1

(
CiDi

)}2

=
1

2

{
3∑
i=1

(
A2
i +

B2
i

k2

)}

±

[
1
2

{∑3
i=1

(
A2
i −

B2
i
k2

)}2

+ 2

{∑3
i=1

(
AiBi
k

)}2
]

√√√√{∑3
i=1

(
A2
i −

B2
i
k2

)}2

+ 4

{∑3
i=1

(
AiBi
k

)}2

(3.22)

After substituting the desired apsis value |er(taps)| = R2 into the left-hand side

of Eq. (3.22), Eq. (3.22) is numerically solved to obtain k. Then, the mode

frequency of the switched system can be determined by ωα = kω. Finally, the

Hamiltonian structure-preserving controller can be designed as follows,

Tc1 = Ter + Kėr

= (MΛαM−1 −∇2
rrU(rr))er − 2ΩfJėr

= (−ω2
αI3 −∇2

rrU(rr))er − 2ΩfJėr

(3.23)
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3.2.3 Switching Point 2: From an Elliptical Orbit to a Circular

Orbit

The second switching strategy is applied when the spacecraft traveling along

the elliptical orbit approaches the other apsis. It is assumed that, after the sec-

ond switching, the equation of motion is Eq. (3.10) with new mode frequency

ωβ. Then, it can be designed such that the motion of the switched system is a

circular orbit with radius R2. At the switching point, the position and velocity

vectors are perpendicular to each other. Therefore, the remaining condition for

the switched system to achieve the circular motion is the magnitude of accel-

eration. Figure 3.2 shows the concept of the second switching. The magnitude

of acceleration for the circular orbit is |ër| = |ėr|2/|er|. Using the equation of

motion ër = MΛβM
−1er = 0 of the switched system, the following equation

should hold for a circular motion.

|MΛβM
−1er| = ω2

β|er| ≡
|ėr|2

|er|
(3.24)

Then, a new mode frequency ωβ is obtained as follows,

ωβ = ±|ėr|
|er|

(3.25)

Finally, the Hamiltonian structure-preserving controller is designed as follows,

Tc2 = Ter + Kėr

= (MΛβM
−1 −∇2

rrU(rr))er − 2ΩfJėr

= (−ω2
βI3 −∇2

rrU(rr))er − 2ΩfJėr

(3.26)
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3.3 Hamiltonian Structure-Based Control

In general, a Hamiltonian function is interpreted as the total energy of

autonomous systems. In this respect, the Hamiltonian structure-based control

strategy can be thought as one of energy-based controls, and the aforementioned

Hamiltonian structure-preserving control can be interpreted as a control scheme

that appropriately shapes the potential energy of the system. According to [92],

energy-based control has various advantages. The most salient feature is that

the physical interpretation of the control input is clear, which makes it possible

to handle the performance of the output as well as ensuring the stability.

In this subsection, a Hamiltonian structure-based controller is designed so

that it can be applied to the unstable LPO tracking problem by extending

previous works [24, 57]. A Hamiltonian structure-based control consists of two

parts: i) potential shaping, and ii) energy dissipation. Potential shaping control

is applied to reshape the gravitational potential around the equilibrium point

to make the point an isolated minimum of the reshaped tracking error Hamil-

tonian function. Note that the potential shaping control is equivalent to the

Hamiltonian structure-preserving control. After potential shaping, a damping

term is added to make the motion converge to the minimum of the reshaped

tracking error of the Hamiltonian function through energy dissipation.

3.3.1 Potential Shaping Control

As mentioned, the principle of the Hamiltonian structure-preserving control

is to reshape the potential energy of the system, and therefore the Hamiltonian

structure-preserving control can ultimately be regarded as a potential shaping

control. It should be noted, however, that the Hamiltonian structure-preserving
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control laws have been designed based only on the linearized equations of mo-

tion. It means that nonlinear stability of the closed-loop system is not guar-

anteed. Because the Hamiltonian structure-preserving controller changes the

topology type of the equilibrium from hyperbolic to elliptic, the Hartman-

Grobman theorem [93] cannot be applied, and therefore nonlinear stability of

the closed-loop system is not guaranteed. In this section, Hamiltonian canon-

ical coordinates are employed to investigate the stability of the Hamiltonian

structure-preserving control. The nonlinear stability can be discussed by ana-

lyzing the system in the canonical coordinates space.

First, for autonomous Hamiltonian systems, the Lagrange-Dirichlet criterion

can be applied to determine the stability of the equilibrium point of system.

Theorem 1 (Lagrange-Dirichlet). If the second variation (Hessian) of the

Hamiltonian, i.e., ∇2H(z) with z = (q,p), is positive definite at the nonde-

generate critical point z∗, then the equilibrium point is stable [94,95].

For a finite dimension system, the formal stability of the equilibrium point

ensures the Lyapunov stability, that is, nonlinear stability [96]. Therefore, as

along as the equilibrium of the autonomous Hamiltonian system satisfies the

Lagrange-Dirichlet theorem, the stability of the equilibrium point is guaranteed

in the sense of Lyapunov. However, in general, the equilibrium point is not

an isolated minimum of the Hamiltonian, that is, an indefinite critical point.

Accordingly, for the indefinite critical point, a control input should be applied

to make the equilibrium be an isolated minimum of the Hamiltonian, which is

called potential shaping. In the case of autonomous Hamiltonian system without

gyroscopic forces, a potential shaping feedback control can be designed using a

fixed gain so that the Hessian of a reshaped Hamiltonian is positive definite at
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the equilibrium point [57,97,98].

On the other hand, in the case of an LPO tracking problem, that is, a

nonautonomous Hamiltonian system with gyroscopic forces, a potential shaping

feedback control should be designed using varying-gain so that the Hessian of

the reshaped Hamiltonian tracking error, ∇2H̃e, after the potential shaping has

a constant value. Furthermore, the artificial tracking error potential function,

Se, which means a potential function used for potential shaping, should be zero

at the equilibrium point to keep the equilibrium unchanged after the potential

shaping, i.e., Se(e∗q ,qr) = 0. Therefore, the potential shaping feedback controller

for the LPO tracking can be designed as follows,

ur(eq,qr) = −∂Se(eq,qr)
∂eq

, −W(qr)eq (3.27a)

Se(eq,qr) =
1

2
eTq

[
kpI3 −∇2

eqeq
Ve(e

∗
q ,qr)

]
eq

=
1

2
eTq

[
kpI3 −∇2

qqV (qr)
]
eq

(3.27b)

Ve(eq,qr) = V (qr + eq) + V (qr) (3.27c)

where the equilibrium (e∗q , e
∗
p) = (0 ,0), and design parameter kp > 0.

As shown in Eq. (3.27b), varying artificial tracking error potential function

is used for the potential shaping feedback control. Because the stability of the

equilibrium point depends on the sign of the second variation (Hessian) of the

reshaped tracking error Hamiltonian function, as long as the class of system

is preserved in the Hamiltonian system, the artificial tracking error potential

function with a higher order than the third-order does not influence the stabil-

ity of the equilibrium point. Accordingly, the artificial tracking error potential

function can be designed as a quadratic form, as shown in Eq. (3.27b). There-

fore, the potential shaping feedback control has a simple linear control form
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like Eq. (3.27a). As the value of kp increases, the gravitational potential around

the equilibrium point is more deformed. Hence, as the kp increases, the location

of the equilibrium point becomes robust to external disturbances and parame-

ter uncertainties. Therefore, the larger the kp, the larger the region where the

equilibrium point is the isolated minimum value of the modified Hamiltonian

tracking error. From the viewpoint of the Hamiltonian structure-preserving con-

trol, the value kp is related to the period of the bounded motion. Indeed, a large

value of kp results in a bounded motion with a high frequency [85,99,100]. These

physical interpretations of the potential shaping provide a guideline to adjust

the value of kp, and the switching Hamiltonian structure-preserving control

strategy is a example of such guideline.

Lemma 1. : In the case of LPO tracking in CR3BP, if the second variation

of the reshaped tracking error potential function with respect to eq is pos-

itive definite at equilibrium (e∗q , e
∗
p), i.e., Γ > 0, except when kp = 1, the

Hessian of the reshaped tracking error Hamiltonian is positive definite, i.e.,

∇2H̃e(e∗q , e∗p,qr,pr) > 0.

Proof. After applying potential shaping, a reshaped tracking error Hamiltonian

function can be written as follows,

H̃e(eq, ep,qr,pr) =
1

2

3∑
i=1

(pr,i + ep,i)
2 +

1

2

3∑
i=1

p2
r,i

+ Ωf

[
(pr1 + ep1)(qr2 + eq2)− (pr2 + ep2)(qr1 + eq1)

+ pr1qr2 − pr2qr1
]

+ Ṽe(eq,qr)

(3.28)

where Ṽe(eq,qr) = Ve(eq,qr) +Se(eq,qr), which denotes the reshaped tracking

error potential function.
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Now, the Hessian of the reshaped Hamiltonian tracking error at equilibrium

(e∗q , e
∗
p) can be written as follows,

∇2H̃e(e∗q , e∗p,qr,pr) =

[
Γ −ΩfJ

ΩfJ I3

]
(3.29)

where

Γ =


∂2Ṽe(e∗q ,qr)

∂e2q1

∂2Ṽe(e∗q ,qr)

∂eq2∂eq1

∂2Ṽe(e∗q ,qr)

∂eq3∂eq1
∂2Ṽe(e∗q ,qr)

∂eq1∂eq2

∂2Ṽe(e∗q ,qr)

∂e2q2

∂2Ṽe(e∗q ,qr)

∂eq3∂eq2
∂2Ṽe(e∗q ,qr)

∂eq1∂eq3

∂2Ṽe(e∗q ,qr)

∂eq2∂eq3

∂2Ṽe(e∗q ,qr)

∂e2q3

 = kpI3

Note that Eqs. (3.27b) and (3.27c) are used to obtain Γ = kpI3. If the leading

principal minors of∇2H̃e(e∗q , e∗p,qr,pr) are positive definite,∇2H̃e(e∗q , e∗p,qr,pr)

is guaranteed to be positive definite. That is, ∇2H̃e(e∗q , e∗p,qr,pr) is positive

definite if and only if Γ > 0 and det(∇2H̃e(e∗q , e∗p,qr,pr)) > 0. Since I3 is

invertible, the following relation is satisfied by the Schur complement.

det(∇2H̃e(e∗q , e∗p,qr,pr)) = det(I3)det(Γ + Ω2
fJI−1

3 J)

= kp(kp − Ω2
f )2

(3.30)

If kp is chosen as any positive value other than Ω2
f , the Hessian of the reshaped

tracking error potential function is positive definite. Therefore, the Hessian of

the reshaped Hamiltonian tracking error is positive definite. In the CR3BP, the

angular velocity of the frame is normalized to Ωf = 1, and therefore Lemma

1 holds for any positive kp except 1.

Consequently, if the proposed potential shaping feedback control, Eq. (3.27),

is applied to an unstable LPO, stability is guaranteed in the sense of Lyapunov

when kp 6= 1 in accordance with the Lagrange-Dirichlet theorem. In addition,
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with the proposed potential shaping control, the vicinity of the equilibrium

point becomes an autonomous Hamiltonian system, i.e., a conservative system,

with a positive definite Hamiltonian function. That is, the Lyapunov stability

is guaranteed because of the nature of energy conservation, but at the same

time convergence to the equilibrium point is not possible. Therefore, for con-

vergence to the equilibrium point, in other words, for exact LPO tracking, the

conservative system structure formed around the equilibrium point should be

broken. To this end, an additional control input should be designed to enable

energy dissipation.

Remark 1. : Because the Lagrange-Dirichlet theorem is a sufficient condition

to determine the stability, it cannot be concluded that the system is unstable

even if the sufficient condition is not satisfied, that is, when kp is 1.

Remark 2. : In this study, the potential shaping control is proposed as Eq.

(3.27), but in practice it may be difficult to design the potential shaping control

input using ∇2
qqV (qr) which constantly changes. That is, it is more feasible to

design a potential shaping control input using a constant value of ∇2
qqV (q∗r)

for a certain time interval of the reference orbit. Here, q∗r denotes a repre-

sentative point for each orbit piece during a certain time interval. However,

in this case, ∇2H̃e(e∗q , e∗p,qr,pr) is not constant, and therefore the Lyapunov

stability is not guaranteed by the Lagrange-Dirichlet theorem. Nonetheless,

because the ∇2
qqV (qr) does not change rapidly in the target reference LPO,

∇2H̃e(e∗q , e∗p,qr,pr) can be considered to be nearly constant by designing suffi-

ciently large kp. In this case, it was shown by Scheeres et al. [24] that the orbital

stability, i.e., Lagrange stability, was guaranteed.

Remark 3. : The mathematical definition of orbital stability is defined in [101].
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However, it is not easy to determine whether or not the conditions for ensur-

ing orbital stability are satisfied in general system. To address this problem,

Scheeres et al. [24] applied the Floquet theory on the linearized system for

the periodic reference orbit and determined the long-term stability, i.e., orbital

stability, through the distribution of the eigenvalues of the monodromy matrix.

3.3.2 Energy Dissipation Control

By applying the proposed potential shaping control, the motion of the space-

craft is “trapped” around the equilibrium point. To make the “trapped” trajec-

tory converge to the equilibrium point, it is required to break the Hamiltonian

structure using dissipative forces.

Let us consider the following linear energy dissipation feedback controller.

uv(ėq) = −kdI3(ep + ΩfJeq)

= −kdI3ėq

, −Kdėq

(3.31)

where kd > 0 is a damping parameter to be designed.

Theorem 2. If an initial value of the spacecraft is given in the vicinity of

the equilibrium point (e∗q , e
∗
p), the spacecraft converges to the equilibrium point

by the proposed potential shaping control, Eq. (3.27), and energy dissipation

control, Eq. (3.31).

Proof. After applying the potential shaping, the reshaped tracking error Hamil-

tonian function near the equilibrium point can be regarded as a locally Lya-

punov function. To obtain a linearized tracking error Hamiltonian function,

He,2, near the equilibrium, the CR3BP equation, Eq. (2.5), should be linearized.
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A linearized CR3BP equation with respect to the reference LPO before applying

the potential shaping control can be written as

d

dt

eq

ėq

 =

 03 I3

∇2
qqU(qr) 2ΩfJ

eq

ėq

 (3.32)

By applying the Legendre transformation using Eq. (2.10), we have

d

dt

eq

ep

 =

 I3 03

−ΩfJ I3

 03 I3

∇2
qqU(qr) 2ΩfJ

 I3 03

−ΩfJ I3

−1 eq

ep

 (3.33)

By the Hamilton’s equation, Eq. (2.8), the following equation can be obtained.


∂He,2(eq,ep,qr,pr)

∂eq

T

∂He,2(eq,ep,qr,pr)

∂ep

T

 =

03 −I3

I3 03


 I3 03

−ΩfJ I3


 03 I3

∇2
qqU(qr) 2ΩfJ


 I3 03

−ΩfJ I3


−1 eq

ep


(3.34)

Therefore, the linearized error Hamiltonian function can be obtained as follows,

He,2(eq , ep) =
1

2

[
eTq eTp

]03 −I3

I3 03


 I3 03

−ΩfJ I3


 03 I3

∇2
qqU(qr) 2ΩfJ


 I3 03

−ΩfJ I3


−1 eq

ep



=
1

2

[
eTq eTp

]−∇
2
qqU(qr)− Ω2

fJJ −ΩfJ

ΩfJ I3


eq
ep


(3.35)

Note from Eq. (3.35) thatHe,2(eq, ep,qr,pr) before applying the potential shap-

ing control cannot be a Lyapunov candidate function because it is not positive

definite. However, after applying the proposed potential shaping control, it is

guaranteed that H̃e,2(eq, ep) is positive definite except for kp = 1 by Lemma

1, and therefore the following H̃e,2(eq, ep) can be a local Lyapunov candidate
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function.

H̃e,2(eq, ep) =
1

2

[
eTq eTp

] Γ −ΩfJ

ΩfJ I3

eq

ep

 (3.36)

Now, after the potential shaping control, the linearized tracking error dy-

namics near the equilibrium point can be expressed using Eqs. (2.17) and (3.31)

as

ėTq =
∂H̃e,2(eq, ep)

∂ep
(3.37a)

ėTp = −∂H̃e,2(eq, ep)

∂eq
+ uTv

= −∂H̃e,2(eq, ep)

∂eq
− ėTq Kd

(3.37b)

Using Eq. (3.37) and the Legendre transformation, the time derivative of H̃e,2(eq, ep)

along Eq. (3.37) can be written as follows,

˙̃He,2 =
∂H̃e,2(eq, ep)

∂eq

∂eq

∂t
+
∂H̃e,2(eq, ep)

∂ep

∂ep

∂t

=
∂H̃e,2(eq, ep)

∂eq

∂H̃e,2(eq, ep)

∂ep
− ∂H̃e,2(eq, ep)

∂ep

∂H̃e,2(eq, ep)

∂eq
− ∂H̃e,2(eq, ep)

∂ep
Kdėq

= −kd‖ėq‖2

≤ 0

(3.38)

Therefore, a set E = {ėq| ˙̃He,2(ėq) = 0} = {ėq = 0}. Meanwhile, ∂H̃e,2/∂ep and

∂H̃e,2/∂eq satisfy the following relations.

∂H̃e,2(eq, ep)

∂ep
= eTp − Ωfe

T
q J (3.39a)

∂H̃e,2(eq, ep)

∂eq
= eTq Γ + Ωfe

T
p J (3.39b)

Then, the largest invariant set in E is M = {(ėq, ėp) = (0,0)}, and there-

fore the equilibrium point (e∗q , e
∗
p) = (0,0) is locally asymptotically stable by
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LaSalle’s invariance principle.

In summary, for a non-autonomous Hamiltonian system, applying the pro-

posed potential shaping control and energy dissipation control can achieve ex-

act target LPO tracking. Note that this result is in line with that of van der

Schaft [57] in an autonomous Hamiltonian system and shares the same philoso-

phy as interconnection and damping assignment passivity-based control (IDA-

PBC) [92,102]. Furthermore, because the proposed Hamiltonian structure-based

control has a proportional-derivative control form, it can be easily implemented

in real systems. However, the orbital tracking performance is only valid when

the system has the exact form of the Hamiltonian system. In other words, if

the Hamiltonian system structure is not maintained due to disturbances, the

tracking performance may be degraded. This lack of robustness is a weakness of

the station-keeping strategy using the geometric structure of phase space [20],

and therefore a combination with a robust control scheme is required for per-

formance enhancement.
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Chapter 4

Filtered Extended High-Gain
Observer and Closed-Loop Stability

The environment of deep-space is highly uncertain, and therefore a dynamic

system cannot be represented as an exact Hamiltonian system. A real system

is a “perturbed” Hamiltonian system due to the unmodeled dynamics, external

disturbances, and parameter uncertainties. In spite of the well-known stability

robustness of the energy-based control for the parameter uncertainty, the ro-

bustness with respect to the external disturbances such as measurement and/or

process noise, is not ensured. Also, even though the stability of the system is

guaranteed, the reference orbit tracking performance may not be satisfactory

due to excessive external disturbances. To address this problem, a number of

energy-based control techniques that are robust to the disturbances and uncer-

tainties have been studied [103–105]. However, all of the previous studies were

only applicable when certain types of disturbances were assumed, which is diffi-

cult to satisfy in real deep-space environments. Moreover, full-state information,

including the position and velocity, are required.

In this chapter, to address these issues, the Extended High-Gain Observer

(EHGO) technique is employed [58]. To attenuate the effects of the measurement

noise amplification of the standard EHGO, an enhanced version of the EHGO
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using integral state feedback, is proposed, which is Filtered Extended High-Gain

Observer (FEHGO). And, the convergence of the proposed filter is proven. The

closed-loop stability analysis for the entire system applying the FEHGO-based

Hamiltonian structure-based controller is also performed.
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4.1 Filtered Extended High-Gain Observer and Its Con-

vergence

The spacecraft dynamics can be written as follows,

Ẋ = f(X) + Bu + Ed (4.1)

where the system state isX = [r,v]T ∈ R6×1, control input is u = [ux, uy, uz]
T ∈

R3×1, and external disturbance is d = [dx, dy, dz]
T ∈ R3×1, f(X) ∈ R6×1 de-

notes the dynamics of the spacecraft, B = Bn + ∆B ∈ R6×3, Bn = [03 I3]T ,

∆B is its associated uncertainties, and E = [03 I3]T ∈ R6×3.

By defining lumped disturbance as d∗ , f(X)− fn(X) + ∆Bu + Ed with

the nominal dynamics fn(X) of the spacecraft in CR3BP, Eq. (4.1) can be

rewritten as

Ẋ = fn(X) + Bnu + Ed∗ (4.2)

The standard EHGO treats the lumped disturbance d∗ as an augmented state

of the system. In this study, the proposed FEHGO treats the integral term

of the position vector with measurement noise as a following additional state

x0 ∈ R3×1.

x0(t) ,
∫ t

0
(r + ν)dτ (4.3)

where ν = [νx, νy, νz]
T ∈ R3×1 denotes position measurement noise, i.e., navi-

gation error.

By defining extended states [x0, r,v,d
∗]T ∈ R12×1, the extended state sys-
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tem equation can be written as follows,

d

dt


x0

r

v

d∗

 =


03 I3 03 03

03 03 I3 03

03 03 03 I3

03 03 03 03




x0

r

v

d∗

+


03×1

03×1

f cr3bp(X)

03×1

+


03×1

03×1

03×1

h

+


03×1

03×1

u(X̂, d̂∗)

03×1

+


ν

03×1

03×1

03×1


(4.4)

where f cr3bp ∈ R3×1 denotes the nonlinear CR3BP equations of motion, Eq.

(2.5), and h ∈ R3×1 denotes the rate of the lumped disturbance, i.e., h = ḋ∗,

which is assumed to be an unknown function but bounded.

Then, the FEHGO can be designed as follows,

d

dt


x̂0

r̂

v̂

d̂∗

 =


03 I3 03 03

03 03 I3 03

03 03 03 I3

03 03 03 03




x̂0

r̂

v̂

d̂∗

+


03×1

03×1

f cr3bp(X̂)

03×1

+


03×1

03×1

u(X̂, d̂∗)

03×1

+


L0

L1

L2

L3

 (x0 − x̂0)

(4.5)

where Li ∈ R3×3, i = 0, · · · , 3, are observer gain matrices, which are designed

according to the following high-gain observer gain assign rule [59].

L0 =
1

ε
diag(l01, l02, l03) (4.6a)

L1 =
1

ε2
diag(l11, l12, l13) (4.6b)

L2 =
1

ε3
diag(l21, l22, l23) (4.6c)

L3 =
1

ε4
diag(l31, l32, l33) (4.6d)

The elements of the observer gain matrices, lij > 0, i = 0, · · · , 3, j = 1, · · · , 3,

are parameters to make the system matrix of the estimation error dynamics be

Hurwitz, and ε� 1 is a positive constant.

For a convergence analysis of the proposed FEHGO, let us define the fol-
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lowing coordinates transformation.

η0 =
x0 − x̂0

ε3
, η1 =

r− r̂

ε2
, η2 =

v − v̂

ε
, η3 = d∗ − d̂∗ (4.7)

Then, the estimation error dynamics of the FEHGO in new coordinates can be

written as

η̇ =
1

ε
Aη +

1

ε
fnm + fh +

1

ε3
fns (4.8)

where ηT = [η0,η1,η2,η3], and

A =



−εL0 I3 03 03

−ε2L1 03 I3 03

−ε3L2 03 03 I3

−ε4L3 03 03 03


, fnm =



03×1

03×1

f cr3bp(X)− f cr3bp(X̂)

03×1


, fh =



03×1

03×1

03×1

h


, fns =



ν

03×1

03×1

03×1


(4.9)

For comparison, let us consider the estimation error dynamics of the standard

EHGO with position measurement noise.

d

dt


η1

η2

η3

 =
1

ε


−εL′1 I3 03

−ε2L
′
2 03 I3

−ε3L
′
3 03 03



η1

η2

η3

+
1

ε


03×1

f cr3bp(X)− f cr3bp(X̂)

03×1

+


03×1

03×1

h



− 1

ε3


εL
′
1

ε2L
′
2

ε3L
′
3

 ν
(4.10)

Note that L
′
i (i = 1, 2, 3) is the EHGO gain that makes the poles of the EHGO

estimation error dynamics and poles of the FEHGO estimation error dynamics

identical. Equations (4.8) and (4.10) show that the estimation error dynamics
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of the FEHGO are less affected by noise amplification due to the high gain of

the observer. Therefore, it can be expected that the estimation performance of

FEHGO is better than that of standard EHGO. Because A/ε is Hurwitz for

all ε, given any positive constant α > 0, there exists a positive definite matrix

P = P T ∈ R12×12 satisfying the following Lyapunov equation.

ATP + PA = −αI12 (4.11)

Now, let us consider a following Lyapunov candidate function for Eq. (4.8).

V1 = ηTPη (4.12)

The nominal CR3BP nonlinear dynamics f cr3bp can be regarded as a Lipschitz

function because there is a lower bound of ri, i = 1, 2, with the Earth’s radius

RE and the Moon’s radius RM , respectively, and f cr3bp converges to 0 as ri in-

creases. Therefore, the following relation is satisfied with the Lipschitz constant

κ.

‖fnm‖ = ‖f cr3bp(X)− f cr3bp(X̂)‖

≤ κ‖X − X̂‖

= κε
√
ε2η2

1 + η2
2

(4.13)

Additionally, the following relations hold.

V1

λmax(P )
≤ ‖η‖2 ≤ V1

λmin(P )
(4.14a)

‖ηTP ‖ ≤ λmax(P )‖η‖ (4.14b)

Using Eqs. (4.13) and (4.14), the time derivative of V1 along Eq. (4.8) can be
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written as follows,

V̇1 = η̇TPη + ηTP η̇

= −α
ε
ηTη + 2ηTP

(
fh +

1

ε
fnm +

1

ε3
fns

)
≤ −α

ε
‖η‖2 + 2λmax(P )‖η‖

{
‖fh‖+

1

ε
‖fnm‖+

1

ε3
‖fns‖

}
≤ −α

ε
‖η‖2 + 2λmax(P )‖η‖

{
γh + κ

√
ε2η2

1 + η2
2 +

1

ε3
γns

}
≤ −α

ε
‖η‖2 + 2λmax(P )‖η‖

{
γh + κ‖η‖+

1

ε3
γns

}
≤ −α

ε

V1

λmax(P )
+ 2λmax(P )

√
V1

λmin(P )

{
γh + κ

√
V1

λmin(P )
+

1

ε3
γns

}
(4.15)

Note that the rate of lumped disturbance and the magnitude of noise are as-

sumed to be bounded, i.e., ‖fh‖ ≤ γh and ‖fns‖ ≤ γns. In addition, using

V̇1 = 2
√
V1

(
d
√
V1/dt

)
, the following relation can be obtained.

d
√
V1

dt
≤ c0

√
V1 +

(
γh +

γns
ε3

)
λmax(P )√
λmin(P )

(4.16)

where c0 = −α/2ελmax(P ) + κλmax(P )/λmin(P ).

Equation (4.16) is a differential inequality, and therefore the bound of the

solution
√
V1(t) can be obtained by applying the comparison lemma [106] as

√
V1(t) ≤

[√
V1(0) +

(γh + γns
ε3

)λmax(P )

c0

√
λmin(P )

]
ec0t −

(γh + γns
ε3

)λmax(P )

c0

√
λmin(P )

(4.17)

By substituting Eq. (4.17) into Eq. (4.14a), the estimation error bound of the

FEHGO can be obtained as

‖η(t)‖ ≤
√
V1(t)√

λmin(P )

≤

[ √
V1(0)√
λmin(P )

+
(γh + γns

ε3
)λmax(P )

c0λmin(P )

]
ec0t −

(γh + γns
ε3

)λmax(P )

c0λmin(P )

(4.18)
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The parameter c0 can be made negative by adjusting ε for a given α, and

therefore the following relation holds for negative α.

lim sup
t→∞

‖η(t)‖ ≤ β =
2ελ2

max(P )(γh + γns
ε3

)

αλmin(P )− 2εκλ2
max(P )

(4.19)

Therefore, from Eqs. (4.7) and (4.8), it can be stated that all of the states of

the FEHGO converge as

lim sup
t→∞

‖x0(t)− x̂0(t)‖ ≤ ε3β

lim sup
t→∞

‖r(t)− r̂(t)‖ ≤ ε2β

lim sup
t→∞

‖v(t)− v̂(t)‖ ≤ εβ

lim sup
t→∞

‖d∗(t)− d̂∗(t)‖ ≤ β

(4.20)

From Eqs. (4.19) and (4.20), as the value of ε decreases, the estimation error

bound of x0 converges to 0 and the error bound of r converges to a specific

value, 2γnsλ
2
max((P ))/αλmin(P ). However, since the error bounds of v and d∗

diverge, the value of ε cannot be reduced indefinitely. Note that the convergence

proof of the FEHGO does not apply any linearization assumption, and therefore

convergence is guaranteed in the whole region regardless of the initial value

of the observer. Therefore, the above convergence proof is more general than

that of the extended state observer (ESO) proposed by Narula and Biggs [30],

where the convergence is guaranteed only around LPO under the assumption

that navigation error does not exist.

4.2 Closed-Loop Stability Analysis

In this section, closed-loop stability analysis for the entire system applying

the FEHGO-based Hamiltonian structure-based controller is performed. The
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FEHGO-based Hamiltonian structure-based controller consists of three parts:

i) potential shaping ur, ii) energy dissipation uv, and iii) disturbance rejection

ud. Each part of the control input is designed using the state values estimated

by FEHGO. The control input for LPO tracking can be written from Eqs. (3.27)

and (3.31) as follows,

u = ur + uv + ud

= −W(rr)êr −Kdêv − d̂∗
(4.21)

where êr = r̂− rr ∈ R3×1, êv = v̂−vr ∈ R3×1, and (rr,vr) denote the position

and velocity vector of the target LPO, respectively.

In this study, the time-varying potential shaping gain matrix W(rr), Eq.

(3.27a), is chosen as follows,

W(rr) = kpI3 −∇2
rrV (rr) (4.22)

Now, from Eqs. (4.4), (4.7), and (4.21), the closed-loop tracking error dynamics

can be obtained as

ėr = ev (4.23a)

ėv = (d∗ + f cr3bp(X)−W(rr)êr −Kdêv − d̂∗)− f cr3bp(Xr)

= f cr3bp(X)− f cr3bp(Xr)−W(rr)er − kdev + W(rr)ε
2η1 + kdεη2 + η3

(4.23b)

For the entire closed-loop system stability analysis, let us consider the fol-

lowing time-varying Lyapunov candidate function, which is similar to that of

the time-invariant case [107].

V2(rr) =
1

2

[
eTr {W(rr) + ζKd}er + 2ζeTr ev + eTv ev

]
(4.24)

where ζ is a positive constant.
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Lemma 2. : The Lyapunov candidate function, Eq. (4.24), is positive definite

if ζ satisfies the following condition.
max

{
− min(Λ−

W
)

kd
,
kd−

√
k2
d
+4min(Λ−

W
)

2

}
< ζ <

kd+
√
k2
d
+4min(Λ−

W
)

2
, if − k2d

4
< min(Λ−W) < 0

0 < ζ <
kd+

√
k2
d
+4min(Λ−

W
)

2
, if 0 ≤ min(Λ−W)

(4.25)

where Λ−W and Λ+
W denote a set of the minimum/maximum eigenvalue of the

time-varying potential shaping gain matrix during one period of the reference

LPO, respectively.

Proof. Since the potential shaping gain matrix W(rr) is a symmetric matrix,

it can always be diagonalized, and therefore the Lyapunov candidate function

V2(rr) satisfies the following relation.

1

2
xTB1x ≤

1

2
xTC1x ≤ V2(rr) ≤

1

2
xTC2x ≤

1

2
xTB2x (4.26)

where x = [‖er‖, ‖ev‖]T , and

C1 =

ζkd + λmin(W(rr)) −ζ

−ζ 1

 (4.27a)

C2 =

ζkd + λmax(W(rr)) ζ

ζ 1

 (4.27b)

B1 =

ζkd + min(Λ−W) −ζ

−ζ 1

 (4.27c)

B2 =

ζkd + max(Λ+
W) ζ

ζ 1

 (4.27d)

Note that min(Λ−W) and max(Λ+
W) denote the minimum and maximum ele-

ments of the set Λ−W and Λ+
W, respectively. For B1 and B2 to be positive
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definite, all leading principal minors of B1 and B2 must be positive. The range

of ζ satisfying these conditions can be obtained as follows,

−
min(Λ−W)

kd
< ζ (4.28a)

kd −
√
k2
d + 4min(Λ−W)

2
< ζ <

kd +
√
k2
d + 4min(Λ−W)

2
(4.28b)

In addition, since ζ is a real number, the following relation must also be satisfied.

−
k2
d

4
< min(Λ−W) (4.29)

In short, the condition for B1 and B2 to be positive definite can be summarized

as Eq. (4.25). If ζ satisfies Eq. (4.25), then positive definiteness of V2(rr) is

guaranteed.

Next, the time derivative of V2(rr) along Eq. (4.23) can be expressed as

V̇2(rr) = eTr (W(rr) + ζKd)ev +
1

2
eTr Ẇ(rr)er + ζeTv ev + ζeTr ėv + eTv ėv (4.30)

where

eTv ėv =− eTv W(rr)er − kd‖ev‖2 + eTv
{
f cr3bp(X)− f cr3bp(Xr) + W(rr)ε

2η1 + kdεη2 + η3

}
≤− eTv W(rr)er − kd‖ev‖2 + eTv

{
f cr3bp(X)− f cr3bp(Xr) + W(rr)ε

2η1

}
+ ‖ev‖

{
kdε‖η2‖+ ‖η3‖

}
(4.31a)

ζeTr ėv =ζeTr

[
f cr3bp(X)− f cr3bp(Xr)−W(rr)er − kdev + W(rr)ε

2η1 + kdεη2 + η3

]
≤ζeTr

{
f cr3bp(X)− f cr3bp(Xr)

}
− ζeTr W(rr)er − ζkdeTr ev + ζeTr W(rr)ε

2η1

+ ζ‖er‖
{
kdε‖η2‖+ ‖η3‖

}
(4.31b)
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f cr3bp(X)− f cr3bp(Xr) = 2ΩfJev +

[
∂U(r)

∂r

]T
−
[
∂U(rr)

∂rr

]T
= 2ΩfJev − Ω2

fJJer −
[
∂V (r)

∂r

]T
+

[
∂V (rr)

∂rr

]T (4.31c)

Because the Lagrange-Dirichlet theorem only guarantees the local stability of

the equilibrium, the stability of the controller proposed in this study is valid

only near the equilibrium point. Therefore, using Eq. (4.31) and the linearized

equation of f cr3bp(X), the following relation can be obtained.

V̇2(rr) ≤ (ζ − kd)‖ev‖2 + (‖ev‖+ ζ‖er‖)(kdε‖η2‖+ ‖η3‖)− ζe
T
r W(rr)er +

1

2
max(ΛẆ)‖er‖2

+ (eTv + ζeTr )
[
− Ω2

fJJer −∇2
rrV (rr)er + 2ΩfJev

]
+ (eTv + ζeTr )W(rr)ε

2η1

(4.32)

where ΛẆ denotes a set of the maximum eigenvalue of the rate of time-varying

potential shaping gain matrix during one period of the reference LPO. Addition-

ally, using ‖er‖ ≤ ‖x‖, ‖ev‖ ≤ ‖x‖, ‖ηi‖ ≤ ‖η‖, i = 1, 2, 3, and Cauchy-Schwarz

inequality, the following inequality can be obtained.

V̇2(rr) ≤ (ζ − kd)‖ev‖2 + ‖x‖‖η‖(1 + ζ)(kdε+ 1) +

[
1

2
max(ΛẆ) + (Ω2

f − kp)ζ

]
‖er‖2

+ (Ω2
f + 2ζ)‖ev‖‖er‖ − eT

v∇2
rrV (rr)er + (eT

v + ζeT
r )W(rr)ε2η1

(4.33)

The last two terms of the Eq. (4.33) satisfy the following inequality.

−eTv∇2
rrV (rr)er ≤ ‖ev‖‖er‖max(|ΛV |) (4.34a)

(eTv + ζeTr )W(rr)ε
2η1 ≤ (1 + ζ)ε2max(|ΛW|)‖x‖‖η‖ (4.34b)

where |ΛV | and |ΛW| denote a set of the maximum absolute value of eigen-

values of the ∇2Vrr(rr) and W(rr) during one period of the reference LPO,

respectively. Then, using Eqs. (4.33) and (4.34), the following inequality can be
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derived.

V̇2(rr) ≤ −xTB0x + ‖x‖‖η‖(1 + ζ)
[
ε2max(|ΛW|) + kdε+ 1

]
(4.35)

where

B0 =

B0,11 B0,12

B0,12 B0,22

 (4.36a)

B0,11 = −1

2
max(ΛẆ)− (Ω2

f − kp)ζ (4.36b)

B0,12 = −1

2

[
Ω2
f + 2ζ + max(|ΛV |)

]
(4.36c)

B0,22 = kd − ζ (4.36d)

Following Remark 4 provides a condition for ζ that matrix B0 in Eq. (4.35)

is positive definite.

Remark 4. : The matrix B0 is positive definite if ζ satisfies the following

condition.

max

{
max(ΛẆ)

2(kp − Ω2
f )
, ζ

}
< ζ < ζ̄ (4.37)

Let us investigate Remark 4. In order for B0 to be positive definite, B0,11 >

0 and det (B0) > 0 must be satisfied. Note from Eq. (4.22) that Ẇ(rr) =

−d
(
∇2

rrV (rr)
)
/dt, and therefore max(ΛẆ) is independent of control gain kp

and kd. Also, the max(ΛẆ) value of the target LPO is always guaranteed to be

positive as shown in Fig. 4.1.
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Figure 4.1 Set of maximum eigenvalue of ΛẆ during one-period of LPO (black

dot line is a reference orbit)

For the condition B0,11 > 0, the range that ζ should be satisfied as follows,


ζ < − max(ΛẆ)

2
(

Ω2
f−kp

) , if 0 < kp < Ω2
f

ζ >
max(ΛẆ)

2
(
kp−Ω2

f

) , if kp > Ω2
f

(4.38)

Note from Eq. (4.38) that the positive condition of ζ is guaranteed only when

kp > Ω2
f . Next, the range of ζ to satisfy the condition det (B0) > 0 can be

obtained as follows,

ζ < ζ < ζ̄ (4.39)
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where

ζ =
ζ1 −

√
ζ2

2(kp − Ω2
f + 1)

, ζ̄ =
ζ1 +

√
ζ2

2(kp − Ω2
f + 1)

(4.40a)

ζ1 = kd(kp − 1)−
[
1 + max(|ΛV |)

]
+

1

2
max(ΛẆ) (4.40b)

ζ2 = ζ2
1 − 4(kp − Ω2

f + 1)
[kd

2
max(ΛẆ) +

1

4

{
1 + max(|ΛV |)

}2
]

(4.40c)

Since ζ is a real number, ζ2 should be positive. Equation (4.40) shows that

ζ2 > 0 is satisfied for sufficiently large ζ1, i.e., sufficiently large kp and kd. Also,

note from Eq. (4.40c) that ζ2
1 − ζ2 > 0 always holds for kp > Ω2

f −1 and kd > 0,

and therefore ζ > 0 is guaranteed. In addition, from Eqs. (4.38) and (4.40), the

following inequality also satisfies for sufficiently large kp and kd.

max(ΛẆ)

2(kp − Ω2
f )
< ζ̄ (4.41)

Therefore, for sufficiently large kp and kd, there exists a positive ζ satisfying Eq.

(4.37), and then the positive definiteness of B0 is guaranteed. Finally, following

Theorem 3 provides the stability analysis of the proposed controller for the

spacecraft in the vicinity of LPO.

Theorem 3. In the vicinity of LPO, applying the proposed FEHGO based

Hamiltonian structure-based control, Eq. (4.21), the LPO tracking error is uni-

formly ultimately bounded.

Proof. From Eq. (4.22), min(Λ−W) > 0 is guaranteed for sufficiently large kp.

From Eq. (4.25), following inequality is also satisfied for sufficiently large kp

and kd.

max(ΛẆ)

2(kp − Ω2
f )
<
kd +

√
k2
d + 4min(Λ−W)

2
(4.42)
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In addition, from Eqs. (4.40a) and (4.40b), it is observed that ζ satisfies the

following inequality.

ζ <
ζ1

2(kp − Ω2
f + 1)

<
kdkp

2(kp − Ω2
f + 1)

+
max(ΛẆ)

4(kp − Ω2
f + 1)

(4.43)

From Eqs. (4.25) and (4.43), the following relation holds for sufficiently large

kp and kd.

ζ <
kdkp

2(kp − Ω2
f + 1)

+
max(ΛẆ)

4(kp − Ω2
f + 1)

<
kd +

√
k2
d + 4min(Λ−W)

2

(4.44)

Therefore, by Eqs. (4.25), (4.37), (4.42) and (4.44), positive ζ always exists

within the following inequality such that B1,B2, and B0 are positive definite

for sufficiently large kp � Ω2
f and kd.

max

{
max(ΛẆ)

2(kp − Ω2
f )
, ζ

}
< ζ < min

{
kd +

√
k2
d + 4min(Λ−W)

2
, ζ̄

}
(4.45)

Now, from Eq. (4.26), the following relation can be obtained.

2V2

λmax(B2)
≤ ‖x‖2 ≤ 2V2

λmin(B1)
(4.46)

Substituting Eq. (4.46), V̇2 = 2
√
V2

(
d
√
V2/dt

)
, and Eq. (4.18) into Eq. (4.35),

we have

d
√
V2(rr)

dt
≤ −c3

√
V2(rr) +

‖η‖(1 + ζ)
[
ε2max(|ΛW|) + kdε+ 1

]√
2λmin(B1)

≤ −c3

√
V2(rr) +

(1 + ζ)
[
ε2max(|ΛW|) + kdε+ 1

]√
2λmin(B1)

(c1e
c0t − c2)

(4.47)
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where

c1 =

√
V1(0)√
λmin(P )

+ c2 (4.48a)

c2 =
(γh + γns

ε3
)λmax(P )

c0λmin(P )
(4.48b)

c3 =
λmin(B0)

λmax(B2)
(4.48c)

Integrating both sides of Eq. (4.47) from 0 to t yields√
V2(rr(t)) ≤

√
V2(rr(0)) +

(1 + ζ)
[
ε2max(|ΛW|) + kdε+ 1

]√
2λmin(B1)

[
c1

c0
(ec0t − 1)− c2t

]
−
∫ t

0
c3

√
V2(rr(τ))dτ

(4.49)

Lastly, applying the Gronwall-Bellman inequality [106] to Eq. (4.49),
√
V2(rr(t))

has the following bounded solution.

√
V2(rr(t)) ≤

(1+ζ)
[
ε2max(|ΛW|)+kdε+1

]
√

2λmin(B1)

[{
c1c3

c0(c0+c3)
+ c2

c3
− c1

c0

}
e−c3t + c1

(c0+c3)
ec0t − c2

c3

]
if c0 6= −c3

+
√
V2(rr(0))e−c3t

(1+ζ)
[
ε2max(|ΛW|)+kdε+1

]
√

2λmin(B1)

[{
c2
c3

+ c1t
}
e−c3t − c2

c3

]
+
√
V2(rr(0))e−c3t, if c0 = −c3

(4.50)

Note that c0 can be made negative as mentioned previously. Therefore, using

c0 < 0, c2 < 0, c3 > 0, c3 = λmin(B0)/λmax(B2), Eq. (4.50), and Eq. (4.46), it

can be shown that LPO tracking error state x = [‖er‖, ‖ev‖]T converges, that

is,

lim sup
t→∞

‖x(t)‖ ≤ −c2(1 + ζ)
[
ε2max(|ΛW|) + kdε+ 1

] λmax(B2)

λmin(B1)λmin(B0)
(4.51)
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The above stability analysis for LPO tracking is an extended version of

the analysis of Gui [107], which analysed the stability of hovering spacecraft

for an equilibrium point around an asteroid. Gui’s analysis showed a global

stability using a controller that exactly cancels the nonlinear equation of motion

around the asteroid. On the other hand, the controller proposed in this study

only locally reshapes the gravitational potential around the LPO considering

the Hamiltonian structure. In addition, the analysis showed the entire closed-

loop stability using the FEHGO with an improved filtering effect even though

the navigation error is relatively large. Finally, the convergence analysis of the

FEHGO based Hamiltonian structure-based controller is advantageous in that

it can be applied to any trajectory tracking problem having a Hamiltonian

structure.
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Chapter 5

Numerical Simulations

In this chapter, numerical simulations are performed to demonstrate the

performance of the proposed controller and observer. Acceptable external dis-

turbance and navigation error are taken into account.

5.1 Disturbance Model

According to [27] and [29], the most significant perturbative force in the

simplified CR3BP is the effect of the eccentricity of the Earth orbits and lunar

orbits. For this reason, in this study, numerical simulation is performed under

the elliptic restricted 3-body problem (ER3BP) model, which is a variant of the

CR3BP considering the orbital eccentricity. The ER3BP used in the simulation

can be written as follows [108],

x′′ − 2y′ =
∂ω

∂x
(5.1a)

y′′ + 2x′ =
∂ω

∂y
(5.1b)

z′′ + z =
∂ω

∂z
(5.1c)

where

ω(x, y, z, f) =
1

1 + e cos f
Ψ(x, y, z) (5.2a)
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Ψ(x, y, z) =
1

2
(x2 + y2 + z2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ) (5.2b)

Note that f and (·)′ denote a true anomaly and a derivative of (·) with re-

spect to true anomaly, respectively. Additionally, e is the eccentricity and is

approximately 0.0554 in the Earth-Moon system. By the chain rule, (·)′ has the

following relation with a time derivative of (·).

(·)′ = d(·)
df

=
d(·)
dt
· dt
df

=
d(·)
dt
· (1− e2)3/2

(1 + e cos f)2
(5.3)

Using Eqs. (5.1) and (5.3), the ER3BP in the time domain can be expressed as

follows,

ẍ+ 2ḟ

[
sin f

(1 + e cos f)
ẋ− ẏ

]
=

ḟ2

1 + e cos f

[
x− (1− µ)(x+ µ)

r3
1

− µ(x− 1 + µ)

r3
2

]
(5.4a)

ÿ + 2ḟ

[
sin f

(1 + e cos f)
ẏ + ẋ

]
=

ḟ2

1 + e cos f

[
y − (1− µ)y

r3
1

− µy

r3
2

]
(5.4b)

z̈ + 2
sin f

(1 + e cos f)
ḟ ż + ḟ2z = − ḟ2

1 + e cos f

[
(1− µ)z

r3
1

+
µz

r3
2

]
(5.4c)

In this study, controller and observer are designed based on the CR3BP model,

and numerical simulation is performed under Eq. (5.4).

5.2 Navigation Error Model

Navigation accuracy is crucial in deep-space station-keeping missions be-

cause more accurate orbit control is possible if more precise spacecraft naviga-

tion is used. Moreover, if the navigation is perfect, that is, if perfect naviga-

tion information is provided without measurement noise, then the EHGO may

almost completely reject the disturbance. Unfortunately, navigation errors al-

ways exist in the real environment, especially in deep-space missions. According
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to [27], [109], and [110], standard deviations of the position error (1σx,y,z) of the

spacecraft are approximately 1 km for the Earth-Moon system, and 10 km for

the Sun-Earth system. In addition, initial orbit injection error is approximately

0.1∼1 km for each direction [26]. Therefore, in this study, numerical simulation

is performed considering 2 km of initial orbit injection error for each direction

and the position measurement with 1 km of random error.

5.3 Simulation Results

Nominal orbit considered in the simulation is one of the various candidate

LPOs for the lunar south pole coverage [111], which is shown in Fig. 5.1. The

properties of the nominal orbit, i.e., halo orbit are summarized in Table 5.1,

and the parameters of the Earth-Moon CR3BP system used in the simulation

are summarized in Table 5.2. As mentioned in Chapter 3, when designing the

potential shaping of the Hamiltonian structure-based control, Eq. (3.27), it

may not be possible to use the exact ∇2
qqV (qr) value, i.e., ∇2

rrV (rr), which

changes constantly. Therefore, in this study, a more feasible control input using

the constant ∇2
rrV (r∗r) for a certain time interval of the reference orbit was

designed, where r∗r denotes a representative point for each orbit piece during a

certain time interval. One period of nominal LPO is divided into 50 equal parts,

and the trajectory corresponding to each time interval could be regarded as an

individual orbit piece. In other words, the potential shaping control is designed

with a new ∇2
rrV (r∗r) every 14/50 days (= 6.72 hr.).
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Figure 5.1 Nominal halo orbit

Table 5.1 Nominal halo orbit parameter values

Quantity Value Units

Z-amp. -55,154.03 km

Period 14 days

Jacobi constant 3.07607 N/A
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Table 5.2 System parameter values

Quantity Value Units

Gravitational constant 6.674× 10−20 km3kg−1s−2

Earth mass (m1) 5.972× 1024 kg

Moon mass (m2) 7.347× 1022 kg

Mass parameter (µ) 0.01215 N/A

Characteristic length (l∗) 385,692.5 km

Characteristic Time (t∗) 4.364 days

5.3.1 Simulation 1

First of all, a numerical simulation is carried out to illustrate the per-

formance of the proposed switching Hamiltonian structure-preserving control.

Model uncertainty, external disturbance, navigation error, and orbit injection

error are not considered in this simulation scenario to evaluate the developed

algorithm. The relative circular orbit size of the spacecraft is chosen similar to

the TPF mission requirements [34]. Specific values of the radii of the transfer

orbits and the initial values of the spacecraft are summarized in Tables 5.3 and

5.4, respectively. Figures 5.2 ∼ 5.5 present the relative position of each space-

craft, and Figs. 5.6 ∼ 5.8 present the control inputs for each spacecraft. Simu-

lation results show that the size of the relative circular motion of the spacecraft

can be changed by applying the switching Hamiltonian structure-preserving

control. However, as the radius of the relative circular orbit decreases, the ro-

tating frequency and magnitude of the maximum control input increases. That

means, as shown in Fig. 5.4, converging to the reference trajectory using the

switching Hamiltonian structure-preserving control is not efficient in the pro-

pellant consumption viewpoint. For instance, as the relative orbital radius of
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the spacecraft decreases by two times, from R1 = 50m to R2 = 25m, the mode

frequency of each mode increases by approximately four times from ω = 40 to

ω = 160, and the required maximum control input magnitude increases from

|amax(t)| = 4.81 × 10−7m/s2 to 3.7 × 10−6m/s2. To compare the consump-

tion of the propellant,
∫ T

0 |a(t)|dt is calculated for one period of the reference

orbit. For the spacecraft with rotation frequency ω = 40, maneuver cost is

approximately (0.3691, 0.3692, 0.3539)m/s for each direction (x, y, z). Likewise,

for the spacecraft with rotation frequency ω = 160, orbit maintenance cost is

(2.8626, 2.8570, 2.8316)m/s. Lastly, consider a somewhat extreme condition, an

initial position offset from the nominal orbit of 2, 000km is considered. Figure.

5.9 shows that the switching Hamiltonian structure-preserving controller works

well even though the spacecraft is far from the reference orbit.

Table 5.3 Radius of transfer orbit

Spacecraft No.1 Spacecraft No.2 Spacecraft No.3

R1 [m] 50 50 50

R2 [m] 100 25 50

Table 5.4 Initial values of spacecrafts

Quantity Value

Frequency (ω) 40

Plane orientation (n̄) (1,1,1)

Spacecraft No.1 position direction (1,1,-2)

Spacecraft No.2 position direction (1,-2,1)

Spacecraft No.3 position direction (-2,1,1)
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Figure 5.2 Orbit transfer using switching HSP control (relative motion)
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Figure 5.3 Relative position of spacecraft No.1 (from R1 = 50m to R2 = 100m)

Figure 5.4 Relative position of spacecraft No.2 (from R1 = 50m to R2 = 25m)
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Figure 5.5 Relative position of spacecraft No.3 (R = 50m)

Figure 5.6 Control input of spacecraft No.1 (from R1 = 50m to R2 = 100m)
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Figure 5.7 Control input of spacecraft No.2 (from R1 = 50m to R2 = 25m)

Figure 5.8 Control input of spacecraft No.3 (R = 50m)
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Figure 5.9 Exaggerated orbit size formation flying scenario along halo orbit

(from R1 = 2, 000km to R2 = 3, 000km)

5.3.2 Simulation 2

In this scenario, numerical simulation is performed to examine how station-

keeping performance of a spacecraft using conventional Hamiltonian structure-

preserving control deteriorates when model uncertainty and disturbance exist.

For this, the Hamiltonian structure-preserving controller proposed by Xu and

Xu [54] is chosen, and the initial orbit injection error is set to 2km in each

direction as in other simulation environments. It is also assumed that relative

navigation error does not exist for the Hamiltonian structure-preserving con-

trol. Figure 5.10 shows the relative trajectories of spacecraft to the nominal

orbit in each case with and without disturbance during three periods of orbit.

Figure 5.11 shows the relative distance and magnitude of the relative velocity
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of the spacecraft. In the absence of disturbance and model uncertainty, that

is, under the CR3BP environment, the mean values of the relative distance

and relative velocity of the spacecraft to the nominal orbit are about 1.831km

and 0.244m/s, respectively. Compared with this, however, in the presence of

disturbance and model uncertainty, that is, under the ER3BP environment,

the magnitudes of the relative distance and relative velocity are approximately

84.448km and 4.429m/s, respectively. From the simulation result, it can be ob-

served that the performance of the existing Hamiltonian structure-preserving

controller is significantly degraded when model uncertainty and external dis-

turbance exist, which demonstrates the need to improve the performance of the

existing Hamiltonian structure-preserving controllers. The station-keeping per-

formance of the Hamiltonian structure-based controller proposed in this study

will be shown in the following simulation.
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Figure 5.10 Relative trajectory of spacecraft with respect to the reference LPO

under Xu’s HSP controller (with and without disturbance, G1 = G2 = 300,

G3 = 200, ∆ = 0)
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Figure 5.11 Relative distance and velocity with respect to the reference LPO

under Xu’s HSP controller (with and without disturbance, G1 = G2 = 300,

G3 = 200, ∆ = 0)
80



5.3.3 Simulation 3

The station-keeping simulation of the spacecraft is performed under various

conditions by applying the proposed strategy in this study. Figures 5.12 and

5.13 show the estimation errors of the state and disturbance of EHGO and

FEHGO for the case of no navigation error. The poles of the EHGO and FE-

HGO are placed at {−220,−210,−200} and {−220,−210,−200,−p} in each

direction, respectively, and p is an arbitrary positive real number. The FEHGO

has one more degree-of-freedom in each direction than the EHGO in the pole

assignment, because the integral state is added in comparison with the EHGO.

Figures 5.12 and 5.13 show that when the poles of the EHGO and FEHGO

are placed at similar locations and there are no navigation errors, the EHGO

estimates the state and disturbance more precisely. This result can be seen as

a result of the phase delay effect, which occurs as FEHGO feedbacks the in-

tegral state. In addition, as the p value increases, the estimation accuracy of

the FEHGO converges to that of the EHGO. This can be thought of as a re-

sult of the relaxation of the phase delay effect because the observer dynamics

corresponding to the integral state become faster.

On the other hand, in the presence of navigation error, Figs. 5.14 and 5.15

show that the state and disturbance estimation accuracy of the FEHGO are

higher than those of EHGO due to the noise filtering effect of FEHGO itself.

To ensure a fair performance comparison, the sampling time for both observers

was set to 12 seconds. There exists still a trade-off between noise attenuation

and the phase delay effect depending on the p value. This property is similar to

that of the low-pass-filter (LPF), and therefore the FEHGO can be thought of as

an observer in the form of LPF and EHGO combined. As shown in Figure 5.16,
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the control input using the state estimated by the FEHGO becomes smoother,

which is more appropriate to be implemented in a real propulsion system, such

as a continuous low-thrust thruster.

Note that the state and disturbance estimated by the FEHGO are smoother

than those by the EHGO. Therefore, a higher observer gain than the EHGO

at the allowable noise level could be tuned in designing the control input. Fig-

ures 5.17 and 5.18 show the estimation error of the state and disturbance dur-

ing 10 periods of orbit, when the poles of the EHGO and FEHGO are on

{−120,−110,−100} and {−220,−210,−200,−190}, respectively. Although the

dynamics of the FEHGO are faster, that is, the observer gain is higher, the

noise level of estimation error is comparable. The mean values of the state and

disturbance estimation error are summarized in Table 5.5. Figure 5.19 shows the

LPO tracking error using the identical Hamiltonian structure-based controller

with kp = 3, 600 and kd = 10, and Fig. 5.20 shows the control inputs. As shown

in Figs. 5.19 and 5.20, spacecraft tracks the target LPO well within a specific

bound. Additionally, the LPO position tracking error bound of the FEHGO

is smaller than that of the EHGO. The mean and standard deviation of the

tracking error are summarized in Table 5.6. Obviously, for the FEHGO to work

properly, it is inevitable that a significant amount of computational power is

required to conduct large amount of computations quickly. It can generally be

expected that there will be no significant difference compared with the amount

of computation required in the orbit determination process using filter. Also,

the peaking phenomenon due to the high-gain observer may adversely affect the

initial tracking performance. However, this problem can be solved by setting

the adequate control input saturation.
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Figure 5.12 Position and velocity estimation error without navigation error
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Figure 5.13 Disturbance estimation error without navigation error
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Figure 5.14 Position and velocity estimation error with navigation error (1σx,y,z

= 1 km)
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Figure 5.15 Disturbance estimation error with navigation error (1σx,y,z = 1 km)
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Figure 5.16 Control input history with navigation error (1σx,y,z = 1 km)
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Figure 5.17 Position and velocity estimation error with different observer pole
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Figure 5.18 Disturbance estimation error with different observer pole
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Figure 5.19 LPO position and velocity tracking error (during 10 periods)
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Figure 5.20 Control input history (during 10 periods)
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5.3.4 Simulation 4

To reduce the orbit tracking error bound, it is important to choose the ap-

propriate potential shaping control gain kp and design the disturbance observer.

As mentioned in Chapter 3, as a higher kp is used, the gravitational potential

around the target orbit is more deformed, and therefore the region of attrac-

tion becomes wider and more robust to the external disturbances. In this study,

the terminology “region of attraction” can be used when an energy dissipation

control is applied. The term “attraction” is not relevant if energy dissipation

control is not applied. Figure 5.21 shows the LPO tracking error bound for the

various potential shaping control gains. The mean and standard deviation of

tracking error are summarized in Table 5.7. As the potential shaping control

gain increases, the position tracking error bound tends to decrease. On the con-

trary, in the case of velocity tracking, the tracking performance becomes worse

due to the noise amplification effect. This result shows that tracking perfor-

mance could be degraded if the control gain is high, especially the noise level

in the estimated state is not sufficiently small. In this regard, it can be stated

that the FEHGO enables more effective orbit tracking than the EHGO.

In this study, the same potential shaping gains kp are used for each direction

to facilitate the control design. However, it is also possible to tune different po-

tential shaping gains for each direction. In other words, different potential shap-

ing gains can be assigned for each direction in the form of diag(kpx , kpy , kpz) in

Eq. (3.27b), not kpI3. Depending on the intensity of the disturbance, the poten-

tial shaping gain in each direction can be flexibly determined, and as a result,

the tracking error bound can be adjusted. This way of the gain tuning is also ap-

plicable for energy dissipation control gain diag(kdx , kdy , kdz), which affects the
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convergence speed of the transient response. Especially, if kdx = kdy = kdz = 0

in Eq. (4.21), spacecraft performs bounded motion with respect to the refer-

ence orbit by the results of the potential shaping control, i.e., Hamiltonian

structure-preserving control. Strictly speaking, the overall closed-loop system

is no longer a Hamiltonian system if the control input is designed using the

estimated states. Still, if fairly accurate estimated states are used, motion of

the Hamiltonian structure-preserving control can be expected, i.e., bounded

motion. Figures 5.22 to 5.24 show the results during 3-period of reference orbit

when there is no navigation error and no energy dissipation control is applied.

First, Figs. 5.22 to 5.23 show the relative trajectory and distance of the space-

craft moving along the reference orbit, which demonstrates that the spacecraft

does not converge to the reference orbit unless energy dissipation control is ac-

tivated. In addition, since the disturbance rejection is well performed, it can be

observed that the motion is maintained as if disturbance does not exist. In this

case, however, the Lyapunov stability of spacecraft with respect to the reference

orbit is not guaranteed. Instead, it can be assured the orbital stability using

Floquet theory. Figure 5.24 shows the eigenvalues of the monodromy matrix

obtained by numerical integration. Because the eigenvalues are located on the

unit circle, the orbital stability is guaranteed.
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Figure 5.21 LPO position and velocity tracking error depending on potential

shaping control change
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Table 5.7 Mean and standard deviation of tracking error depending on potential

shaping control gain

kp

302 452 602 902 1202

∆R [km]
mean 8.502 4.438 2.642 1.344 0.938

std 5.026 3.014 2.020 1.140 0.730

|V | [m/s]
mean 0.129 0.100 0.093 0.116 0.172

std 0.281 0.298 0.283 0.241 0.195

Figure 5.22 Relative trajectory of spacecraft with respect to the reference LPO

without navigation error and energy dissipation control
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Figure 5.23 Distance of spacecraft with respect to the reference LPO without

navigation error and energy dissipation control

Figure 5.24 Monodromy matrix eigenvalues of controlled orbit
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5.3.5 Simulation 5

In this simulation scenario, for comparison with the widely known con-

trol method, such as feedback linearization, the controller proposed by Marc-

hand and Howell is designed [43]. Controller is designed so that the spacecraft

performs relative motion with the radius and rotation rate designated by the

designer. In this simulation, the radius, eor, and the rotation rate, eoθ, are des-

ignated as 50m and 40, respectively. The nominal radial error dynamics are

designed to follow the critically damped response with natural frequency ωn

that meets some prescribed mission requirement.

ër = ëor − 2ωn
(
ėr − ėor

)
− ω2

n

(
er − eor

)
And, the error dynamics for the rotation rate are specified a decaying exponen-

tial.

ëθ = ëoθ − kωn
(
ėθ − ėoθ

)
where k is an arbitrary scale factor. A more detailed description of the con-

troller can be found in [43]. Note that, like Hamiltonian structure-preserving

control, the plane of the resultant motion of the deputy spacecraft is completely

determined by the initial state of the vehicle controller is activated as the Hamil-

tonian structure-preserving controller. Without the model uncertainty, imple-

mentation of the control law is shown in Figs. 5.25 ∼ 5.26. Compared to the

Simulation 1, the results of Hamiltonian structure-preserving control and the

controller proposed by Marchand and Howell are comparable. Although can-

celling the nonlinear terms may generally lead to prohibitive control inputs,

the application of the feedback linearization technique seems acceptable in the

vicinity of the LPO region. However, when the feedback linearization is applied
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under model uncertainty, namely, under the ER3BP model, all the states of

the system diverged. This is a weakness of the feedback linearization technique

compared to the result of Simulation 2 and Fig. 5.27, where the Hamiltonian

structure-preserving controller maintained the bounded motion of spacecraft to

some extent in the same uncertain environment. In other words, it can be stated

that Hamiltonian structure-preserving control is inherently robust against pa-

rameter and model uncertainties.

Figure 5.25 Relative trajectory of spacecraft with respect to the reference LPO
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Figure 5.26 Control input

Figure 5.27 Relative trajectory of spacecraft with respect to the reference LPO

under potential shaping gain kp = 2002

100



Chapter 6

Conclusion

6.1 Concluding Remarks

In this study, feedback control strategies were presented for spacecraft station-

keeping and formation flight in the vicinity of unstable libration point orbit by

leveraging the mathematical structure of the Hamiltonian system. The origi-

nal concept of the Hamiltonian structure-preserving control was extended to

design the desired elliptic/circular orbit pattern by means of switching control

strategy. To achieve the desired relative distances, relative orbital motion was

analyzed and then a strategy similar to classical Hohmann transfer was ap-

plied. By applying the developed switching Hamiltonian structure-preserving

control, it is possible to adjust the radius of the relative motion systematically

that could not be achieved using the existing Hamiltonian structure-preserving

controller.

For the system stability analysis and the development of a controller, canon-

ical coordinates were adopted. Through the canonical coordinate transforma-

tions, the equations of motion of spacecraft were represented in the form of

Hamilton’s equation with generalized coordinates and momenta, and then Hamil-

tonian structure-based controller was designed. The Hamiltonian structure-
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based controller was divided into two parts: i) a potential shaping control, and

ii) energy dissipation control. The potential shaping control makes the equilib-

rium point as an isolated minimum of the tracking error Hamiltonian function

without destroying the Hamiltonian structure of the system. It was shown that

the potential shaping control was same as the Hamiltonian structure-preserving

control. Energy dissipation control makes the motion of spacecraft converge to

the equilibrium point, that is, the isolated minimum of the reshaped tracking

error Hamiltonian.

A filtered extended high-gain observer was designed to recover the station-

keeping and formation flight performance even under highly uncertain deep-

space environment. Using only the location information of spacecraft, the fil-

tered extended high-gain observer can estimate the velocity state of spacecraft

and disturbance/uncertainty acting on the spacecraft. In addition, the degra-

dation of estimation performance is mitigated by using integral state feedback

even under the strong measurement noise. The global convergence of the filtered

extended high-gain observer was proved, and the tracking error was bounded to

the unstable libration point orbit by applying the Hamiltonian structure-based

controller.
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6.2 Further Work

As more ambitious interplanetary missions appear on the roadmap for ad-

vancing the human presence in space, the understanding of spaceflight mechan-

ics and advanced GN&C techniques are also required to progress. Within the

context of orbit maintenance strategy, potential areas for future research devel-

opments are as follows,

Impulsive Station-Keeping Strategy

According to NASA’s ongoing Lunar Gateway mission, the impulsive control

strategy is being considered for orbit maintenance. Nominal trajectory of the

Lunar Gateway mission is a Near Rectilinear Halo Orbit (NRHO), a subclass of

halo orbit family, and the NRHO has a perilune and apolune. In this mission,

orbital maneuver is going to be placed at or near apolune to minimize risk due

to maneuver. In this regard, it would be interesting to analyze and design a

new impulsive station-keeping strategy considering a various constraints.

Hamiltonian Structure-Preserving Control Under Measurement Noise

In this study, navigation error was not considered in designing the Hamil-

tonian structure-preserving controller. Unfortunately, navigation error always

exists in real world mission, and therefore applying the Hamiltonian structure-

preserving control, including navigation error, will not be able to maintain long-

term bounded behavior due to navigation error effect. Because this is a very

fundamental problem, it may be difficult to solve completely. Nevertheless, it

would be valuable to study a new way to attenuate the effect of the navigation

error.
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국문초록

본 논문에서는 불안정한 동적특성을 갖는 라그랑주 점 궤도 주변에서 위성의

궤도유지 및 편대비행을 위한 제어기와 관측기를 설계하였으며, 설계된 제어기와

관측기의 안정성 그리고 전체 시스템의 안정성을 분석하였다. 설계한 기준 제어

전략은 신호처리 관점의 제어이론을 기반으로 하지 않고, 라그랑주 점 궤도의 자

연적인수학적구조를활용하였다.모델불확실성과외부외란으로인한기준제어

전략의 성능저하를 완화하기 위해 외란관측기의 일종인 확장 고이득 관측기를 설

계하였다.

본논문에서는궤도역학에내재되어있는해밀턴시스템의구조를활용하는제

어기를 설계하기 위해 정준좌표를 도입하였으며, 좌표변환을 통해 위성의 운동방

정식을해밀턴시스템의정준형식으로나타내었다.해밀턴시스템의정준형식으로

표현된 운동방정식을 이용해 설계한 기준 제어기는 해밀턴-구조 보존제어와 에너

지 소산제어로 분리 설계된다. Lagrange-Dirichlet 기준은 정준형식으로 나타낸

해밀턴 시스템의 비선형 안정성을 판별하는 충분조건으로, 해밀턴-구조 보존제어

설계의 기준이 된다. 기준 라그랑주 점 궤도 주위에서 해밀턴-구조 보존 제어를 적

용한 결과, 위성은 기준궤도로 수렴하지 않고 기준궤도와 유한한 거리를 유지하는

경계운동을 하였다. 경계운동의 주파수 분석을 통하여 특정한 초기조건 하에서는

원형 경계운동이 가능하였으며, 더 나아가 해밀턴-구조 보존제어의 제어이득 값을

적절히 설정함으로 원형 경계운동의 크기를 체계적으로 조절할 수 있고 이를 위성

편대비행에 응용할 수 있음을 보였다. 추가적으로 에너지 소산제어 입력을 설계하

여 위성이 기준 라그랑주 점 궤도로 점근 수렴하는 운동도 가능함을 수학적으로

증명하였다.
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한편, 심우주상의 예측하기 어려운 섭동력 및 불확실성 하에서도 강건한 궤도

유지와 편대비행을 수행하기 위해 확장 고이득 관측기를 설계하였다. 확장 고이득

관측기는 위성의 위치 정보만을 이용하여 위성의 속도와 위성에 작용하는 외란을

동시에 추정하며, 추정된 상태변수를 이용하여 기준이 되는 피드백 제어입력을 생

성한다. 추정된 외란은 피드포워드 형태의 제어입력으로 구성되어 제어기의 성능

을 강건하게 만든다. 심우주 공간상의 위성의 궤도결정 결과로 얻어지는 위치정보

는상대적으로큰오차를갖는데,확장고이득관측기는위치오차를증폭시킨다는

단점이있다.본연구에서는이러한단점을완화하고자적분관측기형태로개선된

필터링된 확장 고이득 관측기를 설계하고 수렴성을 분석하였다. 그리고 필터링된

확장 고이득 관측기와 시스템의 해밀턴 구조를 활용하는 제어기를 적용한 전체

시스템의 안정성을 분석하였다.

불안정한 라그랑주 점 궤도 주변에서 위성의 궤도유지와 편대비행을 위해 설

계된 제어기법의 성능을 확인하고자 수치 시뮬레이션을 수행하였다. 수치 시뮬레

이션을 위해 지구-달 시스템의 L2 주변 헤일로 궤도를 기준궤도로 설정하였으며,

심우주 공간에서의 다양한 섭동력 및 모델 불확실성을 고려하였다. 궤도결정 오차

로 인한 위성의 위치 및 속도 불확실성이 존재 하더라도 제안한 제어기법을 통해

위성이 궤도유지와 편대비행을 만족스럽게 수행함을 보였다.

주요어: 라그랑주 점 궤도, 불안정 궤도, 비케플러 궤도, 위성 궤도유지, 위성 편대

비행, 해밀턴 시스템, 확장 고이득 관측기
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