17,794 research outputs found
Visible light assisted organosilane assembly on mesoporous silicon films and particles
Porous silicon (PSi) is a versatile matrix with tailorable surface reactivity, which allows the processing of a range of multifunctional films and particles. The biomedical applications of PSi often require a surface capping with organic functionalities. This work shows that visible light can be used to catalyze the assembly of organosilanes on the PSi, as demonstrated with two organosilanes: aminopropyl-triethoxy-silane and perfluorodecyl-triethoxy-silane. We studied the process related to PSi films (PSiFs), which were characterized by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF-SIMS) and field emission scanning electron microscopy (FESEM) before and after a plasma patterning process. The analyses confirmed the surface oxidation and the anchorage of the organosilane backbone. We further highlighted the surface analytical potential of 13 C, 19 F and 29 Si solid-state NMR (SS-NMR) as compared to Fourier transformed infrared spectroscopy (FTIR) in the characterization of functionalized PSi particles (PSiPs). The reduced invasiveness of the organosilanization regarding the PSiPs morphology was confirmed using transmission electron microscopy (TEM) and FESEM. Relevantly, the results obtained on PSiPs complemented those obtained on PSiFs. SS-NMR suggests a number of siloxane bonds between the organosilane and the PSiPs, which does not reach levels of maximum heterogeneous condensation, while ToF-SIMS suggested a certain degree of organosilane polymerization. Additionally, differences among the carbons in the organic (non-hydrolyzable) functionalizing groups are identified, especially in the case of the perfluorodecyl group. The spectroscopic characterization was used to propose a mechanism for the visible light activation of the organosilane assembly, which is based on the initial photoactivated oxidation of the PSi matrixWe acknowledge MSC funding provided by the European Commission through FP7 grant
THINFACE (ITN GA 607232) and by Ministerio de Economía y Competitividad through grant NANOPROST (RTC-2016-4776-1
Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure
A new dual plasma coating process to produce platinum-free catalysts for the
oxygen reduction reaction in a fuel cell is introduced. The catalysts thus
produced were analysed with various methods. Electrochemical characterisation
was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk
electrode. The surface porosity of the different catalysts thus obtained was
characterised with the nitrogen gas adsorption technique and scanning electron
microscopy was used to determine the growth mechanisms of the films. It is
shown that catalytically active compounds can be produced with this dual plasma
process. Furthermore, the catalytic activity can be varied significantly by
changing the plasma process parameters. The amount of HO produced was
calculated and shows that a 2 electron mechanism is predominant. The plasma
coating mechanism does not significantly change the surface BET area and pore
size distribution of the carbon support used. Furthermore, scanning electron
microscopy pictures of the produced films are presented and show the preference
of columnar growth mechanisms. By using different carbons as the support it is
shown that there is a strong dependence of the catalytic activity that is
probably related to the chemical properties of the carbon
Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation
This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L−1). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption–oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles
Heterogeneous catalytic ozonation of 2, 4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: catalytic activity and mechanism
Herein, the catalytic properties of a carbonaceous nanocomposite in the catalytic ozonation process (COP) of 2, 4-dinitrophenol (2, 4-DNP) were investigated and the results were compared with those obtained from single ozonation process (SOP). Magnetic carbonaceous nanocomposite, as a novel catalyst, was applied to optimize the condition for the removal of 2, 4-DNP in the COP, and the influential parameters such as pH, catalyst dosage, addition of radical scavengers, and durability were all evaluated. The results showed that the degradation efficiency of 2, 4-DNP and COD in the COP (98.2, 92) was higher compared to the SOP (75, 61) and the highest catalytic potential was achieved at an optimal pH of 6. The first-order modeling demonstrated that the reactions were dependent on the concentration of the catalyst, with the kinetic constants varying from 0.022 (1/min) in the SOP to 1.377 (1/min) in the COP at the catalyst dosage of 4 g/L and the optimum concentration of catalyst (2 g/L). The addition of radical scavenger noticeably diminished the removal efficiency of 2, 4-DNP in the SOP from 75 down to 54, while the corresponding values for the COP dropped from 98.2 to 93. Furthermore, a negligible reduction in the catalytic properties of the catalyst was observed (~5) after five-time reuse. The results also revealed that the applied method is effectively suitable for the removal of 2, 4-DNP contaminant from industrial wastewaters. © 2015 Balaban Desalination Publications. All rights reserved
Development of Formaldehyde Adsorption Using Modified Activated Carbon – a Review
Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy
Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell
The catalytic activity of modified carbon powder (VulcanXC-72R) for oxygen reduction reaction (ORR) in an air-breathingcathode of amicrobialfuelcell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2 N phosphoric acid, 0.2 N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6–7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H2PO4, KOH, and H2O2 did not show significant activity during the electrochemical test. The HNO3 treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115 mA/m2, at 5.6 mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemicallymodified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction
Factors governing the adsorption of ethanol on spherical activated carbons
Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close to unity). To see the effect of oxygen surface chemistry, selected samples having similar porosity but different oxygen contents were studied in the low relative pressure range. At low ethanol concentration (225 ppmv) adsorption is favored in oxidized samples, remarking the effect of the oxidizing treatment used (HNO3 is more effective than air) and the type of oxygen functionalities created (carboxyl and anhydride groups are more effective than phenolic, carbonyl and derivatives). To analyze the high relative pressure range, spherical and additional ACs were used. As the relative pressure of ethanol increases, the effect of oxygen-containing surface groups decreases and microporosity becomes the most important variable affecting the adsorption of ethanol.Authors thank Generalitat Valenciana – Spain (PROMETEOII/2014/010), MINECO (MAT-2012-32832), MICINN – Spain and plan E (CTQ2012-3176) for financial support
Persulfate treatment as a method of modifying carbon electrode material for aqueous electrochemical capacitors
Competitive adsorption of phenolic compounds from aqueous solution using sludge‐based activated carbon.
Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge‐based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p‐nitrophenol, p‐chlorophenol, p‐hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single‐solute isotherms. Moreover, the Langmuir–Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi‐solute system was in the following order: p‐nitrophenol > p‐chlorophenol > PHBA > phenol
Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates
A new strategy in catalytic ozonation removal method for degradation and detoxification of phenol from industrial wastewater
was investigated. Magnetic carbon nanocomposite, as a novel catalyst, was synthesized and then used in the catalytic ozonation
process (COP) and the effects of operational conditions such as initial pH, reaction time, and initial concentration of phenol on
the degradation efficiency and the toxicity assay have been investigated. The results showed that the highest catalytic potential
was achieved at optimal neutral pH and the removal efficiency of phenol and COD is 98.5% and 69.8%, respectively. First-order
modeling demonstrated that the reactions were dependent on the initial concentration of phenol, with kinetic constants varying
from 0.038 min−1 ([phenol]o = 1500mg/L) to 1.273 min−1 ([phenol]o = 50mg/L). Bioassay analysis showed that phenol was highly
toxic to Daphnia magna (LC50 96 h = 5.6mg/L). Comparison of toxicity units (TU) of row wastewater (36.01) and the treated
effluent showed that TU value, after slightly increasing in the first steps of ozonation for construction of more toxic intermediates,
severely reduced at the end of reaction (2.23).Thus, COP was able to effectively remove the toxicity of intermediates which were
formed during the chemical oxidation of phenolic wastewaters
- …
