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ABSTRACTS 

  

Ethanol adsorption on different activated carbons (mostly spherical ones) was 

investigated covering the relative pressure range from 0.001 to 1. Oxygen surface 

contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by 

thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen 

surface chemistry on ethanol adsorption, different sets of samples were used to analyse 

different relative pressure ranges (below 1000 ppmv concentration and close to unity). 

To see the effect of oxygen surface chemistry, selected samples having similar porosity 

but different oxygen contents were studied in the low relative pressure range. At low 

ethanol concentration (225 ppmv) adsorption is favoured in oxidized samples, 

remarking the effect of the oxidizing treatment used (HNO3 is more effective than air) 

and the type of oxygen functionalities created (carboxyl and anhydride groups are more 

effective than phenolic, carbonyl and derivatives). To analyse the high relative pressure 

range, spherical and additional ACs were used. As the relative pressure of ethanol 

increases, the effect of oxygen-containing surface groups decreases and microporosity 

becomes the most important variable affecting the adsorption of ethanol. 
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1. Introduction. 

Ethanol, a polar volatile organic compound (VOC), has been raising a lot of interest in 

recent years because of its applications as biofuel or as an additive to gasoline [1,2,3,4]. 

Due to this, global production of ethanol from different agroindustrial residues has 

increased continuously, from 17 billion liters in 2000 [5], to over 86 billion liters in 

2011 [6]. Ethanol, in addition to be an additive to improve fuel octane index, represents 

a valid alternative to fossil fuels in internal combustion engines, especially in gasoline 

ones, and therefore the interest in ethanol for diesel engines is also increasing [7,8].  

 

Ethanol is released into the atmosphere during its production, processing, transportation 

and use. For example, in the case of ethanol production by fermentation processes, 

considerable amounts of CO2 and ethanol vapors are released, with losses up to 1.43 % 

of ethanol produced [9]. In the case of vehicles whose fuel includes ethanol, this organic 

compound can evaporate during refueling, operation and also when these vehicles are 

parked [10,11,12].In fact, the fuel tank, both at rest and in operation, is subjected to 

continuous evaporation, resulting in the release into the atmosphere of the most volatile 

components of gasoline [13,14,15], which therefore can be present in low 

concentrations in these environments. Although ethanol is not considered an extremely 

harmful pollutant, at high concentrations (above 1000 ppm) it can cause severe health 

problems, such as eye, skin and respiratory tract irritation, together with negative 

environmental effects [16]. Additionally, the mixture between high concentration 

ethanol and air can be explosive [17]. Considering this, and the increase in ethanol 

production, it is important to control its emissions and recovery with the object of 

improving technical and economic processes [10,11,18,19], with the consequent 
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increase in performance, both during the process of obtaining it [18,19], or during its 

use in vehicles. 

  

Different technologies can be applied to control ethanol emissions, such as thermal 

oxidation, catalytic oxidation, biofiltration, absorption, adsorption, condensation and 

membrane separation [20]. Among them, adsorption has widely been accepted due to its 

effectiveness, easy operation and low cost [21], even at low concentration [22].  

 

Adsorption takes place in porous solid, such as zeolites [23], mesoporous silica [24], 

porous clay [25] or in activated carbons (ACs) [26,27,28]. ACs with different 

morphologies are the most often used materials for this purpose due to their high 

specific surface areas and interesting textural properties [26-28]. As an example, 

activated carbons in form of pellets [29], granular activated carbons [30], powdered 

activated carbons [31,32], nanotubes [33], nanofibres [34], carbon monoliths [35] and, 

furthermore, spherical activated carbons (SACs) [36] can be used for organic 

compounds adsorption.  

 

Spherical activated carbons (SACs) have acquired great interest in the recent years 

because of their advantages with respect to granular or powdered activated carbon, such 

as high wear resistance, high mechanical strength, good adsorption performance, high 

purity, low ash content, smooth surface, good fluidity, good packaging, low pressure 

drop, high micropore volume and more controllable pore size distribution [37,38]. 

Therefore, the development of the adsorbent properties of these materials is aim of 

continuous investigation.  
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In this sense, this study has been focused on activated carbons because they are well-

used by the industry since they can be obtained from cheap and abundant precursors and 

by methodologies that are well-developed in industry and they are easily regenerable 

due to higher thermal stability. 

 

Due to the polar nature of ethanol, it is also convenient to study the effect of the 

modification and/or development of surface oxygen groups in the SACs on the 

adsorption of ethanol. In fact, it has been found that the presence of ethanol (as gasoline 

additive) can modify in a positive or negative way the retention capacity of a canister to 

other hydrocarbons because of its polarity and its hygroscopic character [13,14]. In this 

regard, the concentration and nature of the surface oxygen groups in an AC can be 

modified by using different methods of oxidation [39,40] and/or heat treatments at 

different temperatures [41,42,43]. The oxidation treatments can be performed in liquid 

phase; for example using HNO3 [44], H2O2 [44] or ammonium persulfate [44], or in gas 

phase, with carbon dioxide [45,46], steam [47] or air [48], although other treatments at 

room temperature such as oxygen plasma have also been used [49]. Because of 

oxidation, functional groups of different nature are formed. Also, thermal treatments in 

inert atmosphere at different temperatures can be used to modify the content of these 

oxygenated groups [42]. The characterization of these groups can be performed, among 

other techniques [50,51], by temperature programmed desorption (TPD) [41-43] as it 

causes decomposition of these groups as H2O, CO2 and CO. TPD coupled to some 

system for the evolved gas analysis (e.g. a mass spectrometer) permits the quantification 

of these groups from the integration of the desorption profiles of H2O, CO2 and CO 

[52].  
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The effect that oxygen surface groups have on the adsorption of polar adsorptives 

(especially water) has been deeply studied. However, few studies have analyzed its 

effect on phenol adsorption [53,54] and there are almost no data on SACs. Therefore, 

the aim of this work is to study the adsorption of ethanol on several types of SACs, 

paying special attention to the effect that the oxygen surface groups has on the ethanol 

adsorption, as a function of its relative pressure. Thus, our study focuses both on the 

low relative pressures range and on relative pressures close to unity. For this purpose, 

the results will be analyzed in three scenarios; i) ethanol concentration of 225 ppm, to 

cover the scarce existing data at this low concentration, as well as for security reasons, 

ii) ethanol adsorption at 1000 ppm, according to environmental regulations and health 

concerns that limit indoor concentrations [55] and iii) at high concentrations (ethanol 

relative pressure, near the unity), useful for other applications (e.g., canisters to retain 

high ethanol concentrations). 

 

2. Experimental. 

 

2.1. Materials. 

In this work, a SAC supplied by Kureha Corporation (refered to as BAC) has been used 

as the main starting material [36]. A SAC derived from it, which was obtained through 

CO2 activation [36] at 880 ºC during 24 h (BAC58C) has also been used. In addition, 

other activated carbons, prepared from four different precursors, have been employed: 

two spherical activated carbons obtained from hydrothermal treatment of glucose and 

saccharose and subsequently activated with NaOH and CO2 (samples GLUHT/N/3.0 

and SACHT81C, respectively [56]); a granular activated carbon obtained from coconut 

fiber which has been activated with H3PO4 (CFMHI/70/4.1/3 [57]) and, finally, a 
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commercial granular activated carbon from Mead Westvaco (WVA1100, 10x25). 

Additionally, treated samples derived from them (by oxidation and/or heat-treatment) 

have been used. Information about these materials is summarized in Table 1, from the 

point of view of precursor, synthesis method, activating agent and post-treatment 

carried out. 
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Table 1. Some features of samples used in ethanol adsorption experiments 
Sample Precursor Synthesis method Activating agent Post-treatment 
BAC Commercial  --    
BACA4 BAC  --  -- Oxidation with HNO3 
BACA4/900 BAC  --  -- Treatment at 900 ºC in N2 
BACOx400 BAC  --  -- Oxidation in air at 400 ºC 
BACOx400/900 BAC  --  -- Treatment at 900 ºC in N2 
BAC58C BAC  --  CO2  -- 
BAC58CA4 BAC  --  CO2 Oxidation with HNO3 
SACHT81C Saccharose Hydrothermal 

synthesis 
CO2  -- 

SACHT81CA4 Saccharose Hydrothermal 
synthesis 

CO2 Oxidation with HNO3 

GLUHT/N/3.0 Glucose Hydrothermal 
synthesis 

NaOH  -- 

GLUHT/N/3.0/900 Glucose Hydrothermal 
synthesis 

        NaOH Treatment at 900 ºC in N2 

WVA1100 Wood  --  H3PO4  -- 
WVA1100/900 Wood  --  H3PO4 Treatment at 900 ºC in N2 
CFMHI/70/4.1/3 Coconut fiber Impregnation  H3PO4  -- 
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2.2. Oxidation process. 

BAC was oxidized with 4 M HNO3 solution, mixing 20 ml of the solution with 1 g of 

BAC for 2 h and, afterwards, the sample was washed with distilled water until neutral 

pH. In the case of air oxidation, BAC sample was air treated up to 400 ºC during 2 h in 

a horizontal quartz reactor (2 m long and 0.07 m diameter with a flow of 100 ml/min).  

 

2.3. Thermal treatment. 

The different materials oxidized both in air, or liquid phase, were thermally treated in 

nitrogen inert atmosphere to modify their oxygen contents (10 ºC/min up to 900 ºC) in 

the same horizontal quartz reactor (200 ml/min of N2 flow and 2 h holding time at the 

maximum temperature, 900ºC). 

 

Nomenclature of the materials (see Table 1) includes the name of the precursor (BAC) 

followed by the oxidation agent HNO3 (N) or air (Ox) and, finally, in the case of the 

oxidation with HNO3, the concentration of the HNO3 solution (4 M), and in the case of 

the oxidation with air, the temperature (400 ºC). Also, the temperature of a post-

treatment in N2 (900 ºC) is included if this treatment is performed. 

 

2.4. Textural characterization. 

Textural characterization of all the samples was performed using N2 adsorption at -196 

ºC and CO2 at 0 ºC [58] in a volumetric Autosorb-6B apparatus from Quantachrome. 

Before analysis, the samples were outgassed at 250 ºC for 4 h. The BET equation was 

applied to the nitrogen adsorption data to get the apparent BET surface area (SBET). The 

Dubinin–Radushkevich equation was applied to the nitrogen adsorption data to 

determine the total micropore volume (pores with size < 2 nm) and to the carbon 
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dioxide adsorption isotherms to determine narrow micropore volumes (pores with size < 

0.7 nm) [59]. The volume of mesopores (2 nm to 20 nm, Vmeso) was estimated as the 

difference between the volume (expressed as liquid) of N2 adsorbed at P Po-1 = 0.9 and 

that adsorbed at P Po-1 = 0.2 [57]. 

 

2.5. Oxygen surface characterization. 

Temperature-programmed desorption experiments were done in a DSC-TGA equipment 

(TA, SDT 2960 Simultaneous) coupled to a mass spectrometer (Balzers, OmniStar) to 

characterize the oxygen surface chemistry of all the samples [41,42]. In these 

experiments, 10 mg of sample were heated up to 950 ºC (heating rate 20 ºC/min) under 

a helium flow rate of 100 ml/min. 

 

2.6. Ethanol adsorption. 

Ethanol adsorption isotherms in all samples were obtained using an ASAP 2020 from 

Micromeritics. Before these tests, samples were outgassed for 4 hours under vacuum at 

250ºC. From these adsorption isotherms, three relative pressure ranges were analysed, 

0.003, 0.01 and 0.95, considering that ethanol saturation pressure at 25ºC is 58.75 

mmHg [60]. These relative pressures would correspond to the following concentrations 

if the ethanol adsorption tests would be performed in flow at a total pressure of 760 

mmHg and the other components in the stream would not be adsorbed: 225 ppm (P/Po = 

0.003), 1000 ppm (P/Po = 0.01), and around 73000 ppm (P/Po = 0.95). 

 

3. Results and discussion. 

Adsorption processes on ACs usually depend both on porosity and surface chemistry of 

the absorbents [26-28]. Considering the polar character of ethanol, surface chemistry 
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might play an important role. For a better understanding of its importance, the effect of 

surface oxygen chemistry has to be separated from that of porosity. Thus, the ethanol 

adsorption results are firstly analyzed in five selected samples having different oxygen 

surface chemistry and very similar porosities. Secondly, the results obtained with nine 

additional samples, which differ in porosity and surface chemistry are studied, have 

been analysed to study both the effect of porosity and surface chemistry. 

 

3.1. Porosity of BAC samples. 

Figure 1 presents the N2 adsorption isotherms (at -196 °C) of the spherical activated 

carbon BAC, the samples oxidized with air (BACOx400), HNO3 (BACA4), and those 

samples thermally treated (BACA4/900 and BACOx400/900). 

 

 
Figure 1. N2 adsorption-desorption at -196 ºC of BAC, samples oxidized with air 
(BACOx400), HNO3 (BACA4), and thermally treated samples (BACA4/900 and 

BACOx400/900). 
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From Figure 1 it can be observed that: i) the SACs are microporous adsorbents 

(isotherms type I), ii) these samples have high and quite similar adsorption capacities, 

iii) the treatments performed, both oxidation and thermal treatment in inert atmosphere, 

do not significantly change the shape of the adsorption isotherms, especially for relative 

pressures lower than 0.2, in relation to the original BAC precursor. Table 2 shows the 

textural properties of these SACs deduced from N2 and CO2 adsorption isotherms. 

 

Table 2. Textural properties of the SACs. 

Sample SBET 

(m2 g-1) 
VDRN2 

(cm3 g-1) 
V DRCO2 

 (cm3 g-1) 

BAC 1291 0.55 0.44 

BACA4 1212 0.53 0.46 

BACA4/900 1190 0.54 0.40 

BACOx400 1152 0.54 0.43 

BACOx400/900 1189 0.55 0.40 

 

 

Table 2 shows that, in agreement with the observations extracted from the adsorption 

isotherms, all these SACs have similar adsorption capacities. Consequently, surface 

areas of the SACs are very similar (between 1150 and 1300 m2 g-1), as well as their total 

micropore volumes (VDRN2 between 0.53 and 0.55 cm3 g-1) and their narrow micropore 

volumes (VDRCO2 between 0.40 and 0.46 cm3 g-1).  

 

Interestingly, these SACs present similar textural properties, and hence the effect that 

their different surface oxygen contents might have on ethanol adsorption can be well 

analyzed.  
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3.2. Oxygen surface chemistry in BACs samples. 

In general, surface oxygen chemistry influences the adsorption of VOCs [26,27]. If the 

VOC is polar, the effect of the oxygenated groups can be more important, being 

influenced by the polarity of the compound. Water is one of the most studied polar 

adsorptives given the industrial use of the activated carbons [61,62]. Many of the 

published results regarding water adsorption on activated carbons show that surface 

oxygen groups have more influence on the adsorption at low relative pressures [61,62]. 

Since the polarity of ethanol is lower than that of water (the dipole moments of ethanol 

and water are 1.69 D and 1.85 D, respectively [63]), the effect of oxygen groups on the 

adsorption of ethanol should be expected to be likely less important. The lack of data 

and the current increasing interest of ethanol recommend further research. 

 

Figure 2 (a and b), obtained from the TPD runs, shows CO2 and CO desorption profiles 

for all the BAC samples and their integration allows to quantify oxygen groups that 

decompose as H2O, CO2 or CO. Table 3 summarizes the results obtained and the total 

oxygen contents deduced from them (OT = H2O + 2CO2 + CO). 

 

Both from Figure 2 and Table 3 it can be observed that the type of oxidant used (air or 

HNO3) significantly affects both their oxygen contents, and their oxygen functionalities. 

Thus, air oxidation of the BAC sample produces higher oxygen contents than HNO3 

(compare in Table 3, the total oxygen contents of samples oxidized with air, 7076 µmol 

g-1, and with HNO3, 3312 µmol g-1). However, HNO3 generates more CO2 at 

temperatures below 500 °C than air. All these results agree with previous observations 

showing that the generation of surface oxygen groups largely depends on the nature of 
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the oxidizing agent used [39-40]. Finally, Figure 2 and Table 3 show that the thermal 

treatment reduces, as expected, the surface oxygen groups in the SACs. 

 

 

 
Figure 2. Desorption profiles of CO2 (a) and CO (b) for BAC and its oxidized and 
thermally treated derived samples. 
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Table 3. Quantification of the oxygen groups that decompose as H2O, CO2 or CO and total oxygen content. 

Sample H2O 
µmol/g 

CO2 
µmol/g 

CO 

µmol/g
OT

1 
µmol/g

CO2 (µmol/g) CO (µmol/g) 
Carboxyl Anhydrides Lactones Anhydrides Phenols Carbonyls2 

BAC 455 167 231 1020 58 29 81 0 0 231 
BACA4 573 663 1413 3312 175 182 167 215 657 483 
BACA4/900 30 134 467 764 27 68 12 99 82 286 
BACOx400 250 1095 4636 7076 31 202 862 199 1962 2475 
BACOx400/900 18 82 272 454 6 27 45 29 106 137 

1 Total oxygen content OT = H2O + 2CO2 + CO 
2 Carbonyl groups included quinones and ethers. 
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3.3. Ethanol adsorption. 

Figure 3 shows the ethanol adsorption isotherms at 25 ºC on BAC and on the oxidized 

and thermally treated samples derived from it. These isotherms will be first analysed up 

to relative pressures close to unity. 

 

3.3.1. Ethanol adsorption isotherms at relative pressures close to unity. 

The comparison between N2 adsorption isotherms (Figure 1) and ethanol adsorption 

isotherms (Figure 3) shows that the shapes of these isotherms are similar, despite the 

fact that the shapes of the adsorption isotherms are affected by the experimental 

conditions, (e.g., saturation pressure of the adsorptive, 58.75 mmHg for ethanol at 25 ºC 

and 760 mmHg for N2 at -196 ºC). 

 
Figure 3. Ethanol adsorption isotherms at 25 ºC for BAC, and the oxidized and 

thermally treated samples derived from it. 
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treatments in inert atmosphere do not appreciably affect the ethanol adsorption capacity. 

These results are in agreement with the fact that adsorption of any adsorptive, at relative 

pressure close to unity, mainly depends on the porosity of the material. This well-known 

and accepted observation is clearly supported by many examples where the Gurvitsch 

rule was applied or commented [35,64,65]. 

 

In this sense, since the five SACs studied have similar porosities, their adsorption 

capacities of nitrogen and ethanol, expressed as liquids, are comparable at relative 

pressures close to unity, as it can be seen in Table 4. It can be confirmed that, for a 

relative pressure of 0.95, the ratios of the volume of ethanol adsorbed and the volume of 

nitrogen absorbed (expressed both as liquids) are very close to unity for the five 

samples (in the range of 0.89 to 0.92). 

 

Table 4. Comparison of  Gurvitsch rule in the SACs studied (the adsorbed volumes 
were calculated at P/Po=0.95) 

Sample 

VadsN2 VadsEthanol
VadsEthanol / VadsN2 

(cm3 g-1) (cm3 g-1) 

BAC 0.58 0.51 0.89 

BACA4 0.55 0.49 0.89 

BACA4/900 0.59 0.53 0.90 

BACOx400 0.62 0.55 0.89 

BACOx400/900 0.60 0.53 0.92 

 

These observations indicate that the amount of ethanol adsorbed, especially at relative 

pressures close to unity, depends only on the porosity of the samples and not on their 

surface oxygenated groups content. This fact suggests, at first sight, that the polarity of 

ethanol and its interaction with oxygen groups are not important at these experimental 

conditions.  
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A more detailed analysis of Figure 3 at low relative pressures allows advancing that 

oxygenated groups appear to have some influence on ethanol adsorption. In fact, it can 

be observed that the isotherms at low relative pressures cross at relative pressures 

greater than 0.2. For this reason, next we analyse the ethanol adsorption isotherms at 

low relative pressures. 

    

3.3.2. Ethanol adsorption isotherms at low relative pressures. 

Figure 4 presents the magnification of the ethanol adsorption isotherms at low relative 

pressures using a logarithmic scale from 0.001 to 0.01. Two relative pressure zones 

have been selected; 0.003 (225 ppmv concentration) and 0.01 (1000 ppmv 

concentration). Figure 4 shows that, in general, the isotherms are parallel at low relative 

pressures (<0.003), although two samples cross each other at relative pressure of 0.001, 

and this trend changes as the relative pressure range increases. Thus, up to 0.01 the 

adsorption capacities of the samples vary. Additionally, Table 4 allows observing that 

about 10 % of the narrow micropore volume of each sample is not occupied (i.e., the 

ethanol adsorbed does not totally filling the available narrow microporosity). These 

observations suggest that ethanol adsorption at low concentration could be influenced 

by differents factor such as the oxygen contents and oxygen functionalities, the external 

surface area, the pore size distribution of the wider pores, the different adsorption 

temperatures and the different molecular diameters of ethanol (0.45 nm) and nitrogen 

(0.30 nm). Thus, ethanol might be adsorbed up to a lower extent than nitrogen. 
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Figure 4. Ethanol adsorption isotherms at low relative pressures. 
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These results confirm that at these low relative pressures, the oxygenated groups have a 

significant influence on the ethanol adsorption capacity. However, the fact that the 

sample with highest ethanol adsorption capacity (BACA4) is not the sample with 

highest oxygenated groups content confirms that also the nature of the oxygen groups 

seems to affect the interaction between the adsorbent and ethanol. 

 

Using the methodology published elsewhere [52], deconvolution of the TPD profiles 

(H2O, CO2 and CO) have been performed to get information and to estimate the content 

of the different surface oxygenated functionalities.  Anyway, it is important to recall 

that the values obtained from these deconvolution curves should only be considered as 

estimated values due to possible secondary reactions, such as the reaction of Boudard 

[66]. In this reaction (CO2 +C ↔ 2CO + Energy (122 kJ/mol)), the formation of CO 

from CO2 or, conversely, the generation of CO2 from CO, occur simultaneously and, 

hence, the formation of CO or CO2 cannot be quantified independently. 

 

The evolution of these three compounds can be explained as follow: i) H2O, besides 

being mostly adsorbed on the samples, could also arise from internal changes in 

carboxyl to anhydrides groups, ii) CO2 is derived from carboxyl groups and derived 

compounds (anhydrides and lactones) and iii) CO comes from the carbonyl, phenolic 

and ether groups. In general, the accepted temperature decomposition ranges for groups 

evolving as CO2 are: between 150 and 350 °C for the carboxylic acids [67], between 

350 and 400° C for anhydrides [67] (that also give CO), and between 350 and 650 °C 

for lactones and lactols [68]. The temperatures of groups that evolve as CO are: between 

350 and 400 ° C for anhydrides [67] (which also give CO2), between 600 and 700 °C for 

phenols [67], and between 700 and 1000 ° C for carbonyls, quinones and ethers [67]. 
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As an example, Figure 5 shows the deconvolution of the profiles of CO2 and CO in 

BACOx400/900 sample and the assignation made to obtain individual peaks, 

corresponding to the functional oxygen groups and Table 3 summarizes the results 

obtained. These results confirm the following general aspects: 1) the precursor BAC has 

a low content of surface oxygenated groups, 2) after oxidation (independently of the 

oxidizing agent used) there is an increase in the oxygen groups content, 3) air oxidation 

is more selective to the creation of phenols and carbonyls, whereas oxidation with 

HNO3 is more selective to the creation of carboxyl groups, 4) the samples thermally 

treated in an inert atmosphere have significantly reduced their oxygen groups and 5) 

anhydride contents obtained by deconvolution from CO2 and CO profiles are quite 

similar, which indicates the reliability of the analysis. 
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Figure 5. Deconvolution of the profiles of CO2 (a) and CO (b) in BACOx400/900 

sample. 
 

Regarding ethanol adsorption and the deconvolution results it can be concluded: i) that 

ethanol adsorption at a concentration of 225 ppmv is favoured by the carboxyl and 

anhydride groups, ii) the presence of phenolic, carbonyl groups and their derivatives 

does not benefit the ethanol-adsorbent interactions and iii) for higher ethanol 
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concentrations, when the ethanol adsorption isotherms cross, the importance of the 

carboxyl and anhydride groups in the adsorption of ethanol decrease, being porosity the 

key factor controlling ethanol adsorption.  

 

To confirm that this result is not limited to SACs, ethanol adsorption has been extended 

to activated carbon samples having different morphologies, porosities and oxygenated 

groups contents.  

 

3.3.3. Ethanol adsorption on activated carbons of different nature and porosity. 

Figure 6 shows the N2 adsorption isotherms at -196 °C of the new samples and Table 5 

compiles their textural characterization (see nomenclature in Table 1). From this figure 

it can be deduced, in agreement with the shape of the isotherms, that the activated 

carbons have different porosity distributions: some are activated carbons with type I 

isotherm, characteristic of microporous carbons, and others are activated carbons with 

type IV isotherm (e.g. CFMHI/70/4.1/3 sample), characteristic of mesoporous carbons.  
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Figure 6. N2 adsorption-desorption at -196 ºC for the samples from different nature. 

 

Table 5. Textural properties of the activated carbons from different nature. 

Sample 
SBET VDRN2 V DRCO2 V meso 

(m2 g-1) (cm3 g-1) (cm3 g-1) (cm3 g-1) 
BAC58C 2586 1.05 0.56 0.15 
BAC58CA4 2410 0.98 0.54 0.15 

SACHT81C 2555 1.15 0.69 0.09 
SACHT81CA4 2252 1.00 0.58 0.07 

GLUHT/N/3.0 1270 0.54 0.37 0.15 
GLUHT/N/3.0/900 1452 0.61 0.41 0.16 

WVA1100 1757 0.67 0.36 0.70 
WVA1100/900 1457 0.59 0.31 0.70 

CFMHI/70/4.1/3 2438 0.97 0.49 0.84 

 

Table 5 shows that the activated carbons have different porosity developments, 

according to the shape of the adsorption isotherms. The values of the surface areas are 

between 1270 and 2586 m2 g-1, the micropore volumes are between 0.54 and 1.15 cm3 g1 

and the narrow micropore volumes are between 0.31 and 0.69 cm3 g-1. The hysteresis 

cycles and the large contribution of mesopores in samples WVA1100 and 
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CFMHI/70/4.1/3 must be highlighted, being the mesopore volumes for these samples 

0.70 and 0.84 cm3 g-1, respectively. 

 

Figure 7 shows ethanol adsorption isotherms for these samples. Again, the similarity 

between nitrogen adsorption isotherms (Figure 6) and ethanol isotherms (Figure 7) must 

be remarked, despite the different adsorption temperatures used. Therefore, as 

previously mentioned, when relative pressure increases the microporosity of the 

samples is progressively filled, which explains that porosity is the most important 

parameter influencing ethanol adsorption. Thus, at relative pressures close to unity, the 

microporosity is filled with any of the two adsorbates, nitrogen or ethanol. 

 

 
Figure 7. Ethanol adsorption isotherms at 25 ºC for the samples from different nature. 

 

From comparison between Figures 6 and 7 it can be stated that CFMHI/70/4.1/3 sample, 

which has the highest nitrogen adsorption capacity (see Figure 6), largely due to its high 
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volumes of micro and mesopores, also presents the highest ethanol adsorption capacity 

(see Figure 7). 

 

The above comments (section 3.3.1) regarding the effect of surface chemistry, are 

furthermore confirmed, observing the adsorption isotherms of all the samples at relative 

pressure close to unity. For example, when comparing the isotherms of samples 

BAC58C and SACHT81C with those of their samples oxidized with HNO3 

(BAC58CA4 and SACHT81CA4, respectively). If the oxygenated surface groups were 

important in this relative pressure range, the ethanol adsorption capacity should be 

greater for the oxidized samples BAC58CA4 (86 g ethanol/100 g AC) and 

SACHT81CA4 (69 g ethanol/100 g AC) than for BAC58C (94 g ethanol/100 g AC) and 

SACHT81C (81 g ethanol/100 g AC), contrarily to what is observed in Figure 7. The 

decrease in textural properties (i.e. surface area and micropore volumes) after oxidation 

explains the lower ethanol adsorption capacities of the oxidized samples in comparison 

to the original ones (see Table 5). 

 

All these results have shown that ethanol adsorption at relative pressures close to unity 

is mainly governed by the porosity and not by the oxidation or thermal treatments 

performed over the samples. These observations are clearly confirmed in Figure 8, 

which presents the ethanol adsorption capacities versus nitrogen adsorption ones 

(expressed as liquids) at relative pressure of 0.95. From this figure it is confirmed that 

Gurvitsch rule explains the behavior of the 14 samples studied (including the five 

samples studied in the first part, at low relative pressures), although their surface 

oxygenated groups contents are significantly different. The good correlation between 

the amount of nitrogen and ethanol adsorbed from Figure 8 allows to conclude that 
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ethanol adsorption at relative pressure close to unity is mainly governed by the porosity 

of the samples, regardless the contents in oxygenated groups resulting from the different 

treatments. 

 

 
Figure 8. Relation between volumes of N2 and ethanol adsorbed (as liquids) at relative 
pressure close to unity (P/Po = 0.95). Filled markers correspond to samples studied in 

this section and empty markers to the samples studied in the first section. 
 

 

4. CONCLUSIONS 

In the present paper the adsorption of ethanol on activated carbons with different 

morphologies and oxygen surface chemistry have been studied focusing on three 

relative pressure ranges. The results at low ethanol relative pressures adsorption on five 

spherical activated carbons which have similar textural properties but different oxygen 

surface chemistry show that surface chemistry has an important influence on the ethanol 

adsorption capacity. This influence is not due to the total oxygen content of the sample, 

but especially to the kind/nature of these oxygen functional groups that influence 
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ethanol adsorption capacity at low concentration. Thus, the presence of carboxyl and 

anhydride groups favours ethanol adsorption at low concentration, whereas the presence 

of phenols and carbonyls is negative. Among the oxidation treatments studied, the 

oxidation with 4M HNO3 shows the best performance in these conditions.   

On the contrary, the analysis performed at high ethanol concentration shows that the 

adsorption capacities depend only on the porosity, and not on the surface chemistry of 

the ACs, which is confirmed by the 14 samples selected and studied. In particular, the 

total micropore volume governs ethanol adsorption in these conditions.  
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