13,401 research outputs found

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    System architecture study of an orbital GPS user terminal

    Get PDF
    The generic RF and applications processing requirements for a GPS orbital navigator are considered. A line of demarcation between dedicated analog hardware, and software/processor implementation, maximizing the latter is discussed. A modular approach to R/PA design which permits several varieties of receiver to be constructed from basic components is described. It is a basic conclusion that software signal processing of the output of the baseband correlator is the best choice of transition from analog to digital signal processing. High performance sets requiring multiple channels are developed from a generic design by replicating the RF processing segment, and modifying the applications software to provide enhanced state propagation and estimation

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    A New Scheme for Spreading & De-spreading in the Direct Sequence Spread Spectrum Mechanism

    Get PDF
    Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) techniques are widely used to implement code-division multiple access (CDMA) in wireless communication systems.  Both DSSS and FHSS systems help reducing the effects of interference on the transmitted information making it robust against channel impairments.  DSSS uses a signal bandwidth that is much broader than the information signal bandwidth.  Traditionally, the wide band signal is generated by multiplying the narrowband information signal with a binary code, often designated as a spreading code, to generate the wideband signal that is transmitted. The original information signal can be recreated at the receiver by multiplying the received wideband signal by the same binary code (now designated as a de-spreading code) used to generate the wideband transmitted signal.  To extract the original information signal, the spreading and de-spreading codes must be in synchronism at the receiver and amplitude match with each other.  A new modification for the direct sequence spread spectrum is proposed in this paper. The mechanism introduced in this approach implicates generating the wideband signal by circularly shifting the spreading code (PN) by n places, where n represents the value of the current byte of information signal. The yielded signal is modulated using BPSK modulator before transmitting it.  The original information signal is extracted at the receiver by correlating the received signal (which is actually the original spread sequence circularly shifted by n places) with a locally generated replica of the spreading code.  The position of the maximum value of the cross-correlation vector represents the value of the information signal byte.  The proposed configuration has been implemented using Simulink simulator and the obtained results show that its performance is identical with the conventional DSSS

    Passive detection of moving aerial target based on multiple collaborative GPS satellites

    Get PDF
    Passive localization is an important part of intelligent surveillance in security and emergency applications. Nowadays, Global Navigation Satellite Systems (GNSSs) have been widely deployed. As a result, the satellite signal receiver may receive multiple GPS signals simultaneously, incurring echo signal detection failure. Therefore, in this paper, a passive method leveraging signals from multiple GPS satellites is proposed for moving aerial target detection. In passive detection, the first challenge is the interference caused by multiple GPS signals transmitted upon the same spectrum resources. To address this issue, successive interference cancellation (SIC) is utilized to separate and reconstruct multiple GPS signals on the reference channel. Moreover, on the monitoring channel, direct wave and multi-path interference are eliminated by extensive cancellation algorithm (ECA). After interference from multiple GPS signals is suppressed, the cycle cross ambiguity function (CCAF) of the signal on the monitoring channel is calculated and coordinate transformation method is adopted to map multiple groups of different time delay-Doppler spectrum into the distance−velocity spectrum. The detection statistics are calculated by the superposition of multiple groups of distance-velocity spectrum. Finally, the echo signal is detected based on a properly defined adaptive detection threshold. Simulation results demonstrate the effectiveness of our proposed method. They show that the detection probability of our proposed method can reach 99%, when the echo signal signal-to-noise ratio (SNR) is only −64 dB. Moreover, our proposed method can achieve 5 dB improvement over the detection method using a single GPS satellite
    • …
    corecore