2 research outputs found

    Low-level dichotomy for Quantified Constraint Satisfaction Problems

    Full text link
    Building on a result of Larose and Tesson for constraint satisfaction problems (CSP s), we uncover a dichotomy for the quantified constraint satisfaction problem QCSP(B), where B is a finite structure that is a core. Specifically, such problems are either in ALogtime or are L-hard. This involves demonstrating that if CSP(B) is first-order expressible, and B is a core, then QCSP(B) is in ALogtime. We show that the class of B such that CSP(B) is first-order expressible (indeed, trivially true) is a microcosm for all QCSPs. Specifically, for any B there exists a C such that CSP(C) is trivially true, yet QCSP(B) and QCSP(C) are equivalent under logspace reductions

    Low-level dichotomy for quantified constraint satisfaction problems

    No full text
    Building on a result of Larose and Tesson for constraint satisfaction problems (CSPs), we uncover a dichotomy for the quantified constraint satisfaction problem QCSP(B), where B is a finite structure that is a core. Specifically, such problems are either in ALogtime or are L-hard. This involves demonstrating that if CSP(B) is first-order expressible, and B is a core, then QCSP(B) is in ALogtime. We show that the class of B such that CSP(B) is first-order expressible (indeed trivial) is a microcosm for all QCSPs. Specifically, for any B there exists a C — generally not a core — such that CSP(C) is trivial, yet QCSP(B) and QCSP(C) are equivalent under logspace reductions
    corecore