5 research outputs found

    Ground-State Properties of Two-Dimensional Frustrated Quantum-Spin Models

    Get PDF
    In der vorliegenden Arbeit werden Grundzustandseigenschaften zweidimensionaler antiferromagnetischer Quantenspinsysteme untersucht. Wir betrachten insbesondere das Spin-1/2 Shastry-Sutherland Modell, das aus einem Heisenbergmodell mit zusätzlichen Zweispinwechselwirkungen besteht, und ein von J. Zittartz vorgeschlagenes Spin-1/2 Plakettenmodell, ebenfalls mit Zweispinwechselwirkungen und mit zusätzlichen Vierspinwechselwirkungen auf Plaketten. Diese Modelle sind von besonderem Interesse, da sie sich durch einen exakt bekannten Grundzustand in der dimerisierten Phase auszeichnen. Das Shastry--Sutherland Modell ist in der Substanz SrCu2(BO3)2 realisiert. Die Phasengrenze der dimerisierten Phase konnte trotz Anwendung verschiedener theoretischer Ans"atze bis heute nicht exakt bestimmt werden. Wir können mit Hilfe eines von P. W. Anderson vorgeschlagenen Variationsansatzes in Verbindung mit exakter Diagonalisierung durch das Lanczos Verfahren und zusätzlicher Anwendung von Parallelisierungstechniken (OpenMP) Grundzustände offener Gitter bis 31 Gitterplätze berechnen, die eine strikte untere Schranke des Grundzustands des unendlich großen Systems bilden. Desweiteren werden Gitter mit bis zu 36 Gitterplätzen mit periodischen Randbedingungen betrachtet, deren Grundzustände den des unendlich großen Systems direkt annähern. Dabei werden Untersektoren des Hilbertraums mit bis zu 500 Millionen Zuständen betrachtet, was einer Erweiterung der uns bekannten bisher betrachteten Räume um mehr als eine Größenordnung darstellt. Die Gundzustandsenergien hängen stark von der Geometrie der jeweiligen betrachteten Gitter ab. Es wird versucht, die Grundzustandsenergien von Systemen mit ähnlicher Geometrie mit Hilfe linearer Fits auf ein unendlich großes System zu extrapolieren. Leider scheinen die untersuchten Gitter noch zu klein zu sein, um eine eindeutige Aussage über die genaue kritische inverse Frustration machen zu k"onnen, bei der die dimerisierte Phase der beiden Modelle jeweils verschwindet

    High-accuracy variational Monte Carlo for frustrated magnets with deep neural networks

    Full text link
    We show that neural quantum states based on very deep (4--16-layered) neural networks can outperform state-of-the-art variational approaches on highly frustrated quantum magnets, including quantum-spin-liquid candidates. We focus on group convolutional neural networks (GCNNs) that allow us to impose space-group symmetries on our ans\"atze. We achieve state-of-the-art ground-state energies for the J1J2J_1-J_2 Heisenberg models on the square and triangular lattices, in both ordered and spin-liquid phases, and discuss ways to access low-lying excited states in nontrivial symmetry sectors. We also compute spin and dimer correlation functions for the quantum paramagnetic phase on the triangular lattice, which do not indicate either conventional or valence-bond ordering.Comment: 12 pages, 8 figure

    Slave particle study of the strongly correlated electrons

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 143-151).Until three decades ago, our understanding of the condensed matter systems were based on two frameworks developed by Russian physicist Lev Landau: his theory of phase transition, and Fermi liquids. The Landau theory of phase transition and the Fermi liquid theory together, can successfully explain a wide range of phenomena from ferromagnetism and antiferromagnetism to the conventional superconductivity. However, in the last thirty years, many experiments including the fractional quantum Hall effect (QHE) have revolutionized our view of nature. For a system of electrons that is subject to a very strong interactions and/or strong correlations between electrons, these two frameworks may break down. There many phases of matter, e.g. spin liquids, that do not break any classical symmetry, but are separated by phase transition. These states has the so called topological order. Also, many of these states do not follow predictions of the Fermi liquid theory and have many exotic behaviors. A rather powerful technique to handle with these issues is the slave particle method. In the first part of this thesis, using a more general slave particle method we study the strongly correlated Hubbard model, whose ground state may represent a Fermi liquid state at two spatial dimensions. We study the phase diagram of this model and show that the gapped spin liquid can be realized on the both honeycomb and square lattices, within mean-field. We also investigate the effective low energy theory of these states. Some of them are subject to compact gauge fluctuations. We study instanton effect in them and show that instanton proliferation can destabilize some of them. Another interesting problem in which we are interested in is the copper based high temperature superconductors (HTSC). The parent state of cuprates materials (undoped case) is a Mott insulator whose ground state is proposed to be a spin liquid. Upon doping, many exotic phases appear, from high temperature superconductivity to the pseudogap phase with disjoint Fermi segments (Fermi arcs) instead of a closed Fermi surface, or the strange metal phase where the Fermi liquid theory breaks down and exhibits very unusual transport properties. The isotope effect in these materials is also very different from that of conventional superconductors. In the second part of this thesis we study the above mentioned problem in detail and explain them by appealing to the slave particle method.by Seyyed Mir Abolhassan Vaezi.Ph.D
    corecore