
Ground{State Properties of

Two{Dimensional

Frustrated Quantum{Spin Models

I n a u g u r a l { D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakult�at

der Universit�at zu K�oln

vorgelegt von

Andreas Sindermann

aus K�oln

K�oln 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kölner UniversitätsPublikationsServer

https://core.ac.uk/display/12009357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Institut f�ur Theoretische Physik der Universit�at zu K�oln

Z�ulpicher Stra�e 77, D{50937 K�oln

Berichterstatter

Priv.{Doz. Dr. U. L�ow

Prof. Dr. D. Stau�er

Tag der m�undlichen Pr�ufung

4. Februar 2005

Contents

1. Introduction 5

2. Two{Dimensional Frustrated Quantum{Spin Models 9

2.1. Shastry{Sutherland Model . 9

2.2. Plaquette Model with Four{Spin Interaction 15

3. Method 17

3.1. Symmetry{Operators . 18

3.2. Lanczos Method . 18

3.3. ARPACK (Arnoldi Package) . 20

3.4. Hashing Technique . 21

3.5. Lin{Algorithm . 23

3.6. Serial Programming Approach 24

3.7. Parallel Programming Environments 26

3.7.1. MPI . 26

3.7.2. ARPACK and MPI . 28

3.7.3. OpenMP . 30

3.7.4. ARPACK and OpenMP 31

4. Numerical Results for the Shastry{Sutherland Model 35

5. Numerical Results for the Plaquette Model 45

6. Summary and Outlook 51

6.1. Outlook . 54

A. Sample Implementations in C 55

A.1. Hashing Technique . 55

A.2. Lin-Algorithm . 56

A.3. Calling Fortran Subroutines from a C/C++ Program 57

Bibliography 59

Anh�ange gem. Promotionsordnung 63

English Abstract . 63

Deutsche Kurzzusammenfassung . 65

Erkl�arung . 69

Lebenslauf . 71

1. Introduction

The examination of quantum{spin models in one and higher dimensions has been

subject of interest for more than 70 years [1]. Experiments and theoretical studies

have shown that interaction between magnetic ions can be well represented by a

model Hamiltonian describing a set of interacting spins Si . One important class

of such quantum{spin models consists of spins coupled to their nearest neighbors

on a �nite lattice. The Hamiltonian for such a system reads

H =
∑
<i;j>

(JxS
x
i S

x
j + JyS

y
i S

y
j + JzS

z
i S

z
j) (1.1)

where < i; j > denotes all nearest neighbor pairs on a lattice and S�
i is the �

component of the spin operator on site i . This generic Hamiltonian describes

various types of well known quantum{spin models. For Jx = Jy = Jz � J > 0

we �nd the antiferromagnetic Heisenberg model, for J < 0 the ferromagnetic

Heisenberg model, for Jz = 0 the XY model and for Jx = Jy the XXZ model.

In one dimension the XXZ model has been solved analytically by Bethe and

Hulth�en about 70 years ago [2, 3]. Unfortunately the Bethe ansatz is limited to

a small set of quantum{spin systems, especially to one{dimensional systems. For

that reason other methods were needed to study the properties of quantum spin

systems. One of the �rst numerical methods applied is the exact complete diag-

onalisation which Bonner and Fisher used in 1964 to study the one{dimensional

XXZ model [4]. They investigated the dependence on the �nite size and aniso-

tropy of di�erent ground state and thermodynamic properties of the model. 14

years later Oitmaa and Betts [5] using also standard diagonalisation routines up

to 16 sites and the iterative power method [6] for 18 sites investigated the ground

state energies and pair correlations for the two{dimensional antiferromagnetic

Heisenberg model. Also this method is only applicable up to a certain system size

as it fast comes to technical limits of even today's computers.

Often, only the eigenvalues at the upper and lower end of the spectrum are of

interest so that other methods like the Lanczos method come into focus. With this

method later many investigations with exact diagonalisation have been performed.

Already in 1994 Schulz et al. [7] were able to calculate the ground state energy of

a 6� 6 Heisenberg model with frustration containing about 12 million states. To

our knowledge the largest quantum spin system studied up to now is a spin{1=2

XY model on a square lattice with about 32 million states in the subsector of the

Hilbert space containing the ground state.

Since it is that diÆcult to calculate the spectrum and the ground state energies

of quantum spin models, those with an exactly known ground state are of special

interest. One of these very few quantum spin models has been introduced in 1981

by Shastry and Sutherland. It consists of the two{dimensional Heisenberg model

6 Introduction

with additional frustrating interactions between next neighbors which starting with

a certain critical value of the frustration establishes the exactly known ground

state. This model became especially of interest when Miyahara and Ueda [8] in

1999 pointed out the magnetic properties of the substance SrCu2(BO3)2 that

was synthesised already in 1991.

In general there is no speci�c reason to restrict on bilinear interactions like in the

Shastry{Sutherland model. Currently, four{spin interactions have been introduced

by which magnetic properties of certain substances could be better explained.

A model with a simple structured four{spin interaction is the frustrated plaquette

model which for large frustration exhibits an exactly known ground state similar

to the Shastry{Sutherland model.

By means of di�erent methods, experimentally and theoretically, for many years

the exact critical phase boundary between the antiferromagnetic and the so called

dimer phase is studied where the exactly known eigenvalue is the ground state.

Also an intermediate phase is predicted whose nature is still in discussion.

In this work two di�erent approaches are followed to �nd precise data for the

transition point. On the one hand a variational approach published already in

1951 by P. W. Anderson [9] is applied which gives a strict lower bound for the

critical value of the frustration. On the other hand by calculating systems with

periodic boundary conditions in�nite systems can be simulated.

Applying symmetry operators that commute with the model Hamilton operator

subsectors can be created whose lowest eigenvalues can be calculated with the

Lanczos method. Although these methods are widely used it is still very diÆcult

to treat a system size of N � 32.

Using subtle parallel programming techniques we are able to investigate lattices

containing up to 36 sites.

The outline of this thesis is as follows.

In chapter 2 the two models are introduced and their phase diagrams and their

physical properties are discussed. Also, if applicable, the realisation in substances

is mentioned and in that case an overview of experimental results on the speci�c

model is given.

In chapter 3 we introduce methods applied to �nd ground state properties. Sym-

metry operators commuting with the Hamilton operator of the model investigated

are introduced by which the Hilbert space can be diagonalised in blocks leading

to subsectors with smaller numbers of states needed to be considered in the cal-

culations. Also a short introduction to the numerical library ARPACK and its

parallel version P ARPACK is given which o�ers a fast and stable implementation

of the Lanczos method which also is described in detail. To �nish this chapter we

summarise the main features of two di�erent parallelisation techniques of which

one in the end is used in a program that calculates the ground state energies of

the models described in chapter 2.

Chapters 4 and 5 give a detailed overview of the results of the calculations of the

ground state energies that mainly have been performed at the local computing

center and at the IBM supercomputing facilities at the Forschungszentrum J�ulich

on which especially the largest system considered has been calculated.

A summary of the results and an outlook close this thesis in chapter 6. An abstract

7

in english and german can be found in the appendices.

2. Two{Dimensional Frustrated

Quantum{Spin Models

In this thesis we study two{dimensional quantum{spin models with antiferromag-

netically coupled spins of size S = 1=2. The generic Hamilton operator for such

systems reads

H =
∑
i j

Ji jSiSj ; (2.1)

with Ji j > 0 representing the exchange coupling between next and next{nearest

neighbor sites i and j . Eq. 2.1 thus includes as special case the two{dimensional

Heisenberg model which is of interest as a minimal magnetic model of the undoped

copper{oxide planes in high Tc superconductors. The Hamiltonian (eq. 2.1) in-

cludes also the Shastry{Sutherland model which in this work we examine in detail.

In eq. 2.1 only interactions between two spins are assumed. Indeed, most spin

models discussed in the literature are of this type. However, both from the phe-

nomenological and from the theoretical point of view there is no restriction to

this bilinear type of interaction, and only recently the implications of a four{spin

interaction, the so called ring exchange, has been widely discussed. In this con-

text it is argued that a careful derivation of spin Hamiltonians from the three

band Hubbard model must include as next to leading order four{spin terms of a

certain type (the so called ring exchange). Also for spin{ladders the four{spin

interactions are thought to be essential, both for the ground state properties and

for the thermodynamics.

In this thesis besides the Shastry{Sutherland model with its two{spin interac-

tion we also consider a model with a four{spin interaction of a simpler type than

the phenomenologically motivated models just mentioned. This model, sugges-

ted by J. Zittartz, and the Shastry{Sutherland model both have the interesting

and seldomly found property of an exactly known eigenstate which for frustrated

couplings is also the ground state.

2.1. Shastry{Sutherland Model

In this section we study a model introduced in 1981 by Shastry and Sutherland

[10] as a two{dimensional generalisation of the one{dimensional Majumdar{Ghosh

[11] model. The Hamilton operator for this model is given by

H = J2
∑
<i;j>

SiSj + J1
∑
<i;j>

dimer

SiSj ; (2.2)

where Si denotes a spin operator for spin S at site i . The sums are running over

nearest neighbors with coupling J2 and over next{nearest neighbors with coupling

10 Two{Dimensional Frustrated Quantum{Spin Models

J1. In the limit J1 = 0 this model is simply the antiferromagnetic Heisenberg

model. The Shastry{Sutherland model is of special interest as it has an exactly

known eigenstate (the dimer singlet state) as was shown by Shastry and Suther-

land [10].

4

3

2

65

1

��������

��

��

����
2J

1J

Figure 2.1.: Illustration of a dimer{solid. Spins are denoted with circles. Two

spins coupled with J1 form a dimer. The dimers interact via J2.

To show that the dimer state is the ground state it is suÆcient to consider

the unit cell depicted in �g. 2.1. The Hamiltonian can be explicitely written as

H = J1(S1S2 + S3S4 + S5S6) + J2(S2(S3 + S4) + S5(S3 + S4)).

If the system is in the dimer singlet ground state we have the total spin (Si+Sj) =

0 if Si and Sj belong to the same dimer so that only the �rst part of H is left

over for which we �nd an eigenvalue E0 = �1
2J1S(S + 1) (in case of S = 1=2:

E0=J1 = �3=8) per dimer.
With x = J2=J1 we denote the inverse frustration. In case of x becoming very large

we �nd the standard Heisenberg model and for x = 0 we �nd uncoupled dimers

on the diagonal bonds. Considering a simple four{spin system for x < xc =
1

2S+1

the dimer state is also the ground state. Better estimates for xc of the in�nite

system can be obtained by calculating the ground state energies of larger systems

with open boundaries as described below.

The model shows a rich zero temperature phase diagram as a function of J1 and

J2 (�g. 2.3) [12, 10]: In the classical case (S ! 1) one �nds two long range

helical phases for 0 < jJ2j < J1 separated by an antiferromagnetic dimer phase for

J2 = 0 < J1. Analogously one �nds a ferromagnetically ordered dimer phase for

J2 = 0 > J1. In the regime jJ2j > J1 one �nds an antiferromagnetically ordered

ground state for J2 > 0 and ferromagnetically ordered for J2 < 0.

For the quantum mechanical case (S <1) the scenario changes as follows [12]:

The classical antiferromagnetic dimer phase changes by quantum e�ects to a

singlet dimer state which is the exact ground state for certain values of the inverse

frustration x .

This singlet dimer phase extends to a larger area than its classical counterpart

(see right hand side of �g. 2.3).

For jJ2j > J1 and J2 < 0 the quantum mechanical ferromagnetic region persists.

For S = 1=2 one �nds a �rst order phase transition from the singlet dimer to

the ferromagnetic phase at exactly x = �1 without an intermediate regime. For

1=2 < S < 1 the system enters an intervening phase between the dimer phase

and the ferromagnetic phase at a value x fmc (S). On the antiferromagnetic side of

the phase diagram J2 > 0 for all �nite values of S an intermediate phase between

the antiferromagnetic and the dimer phase exists whose nature is currently not

2.1 Shastry{Sutherland Model 11

J2

J2

J1

J1

Figure 2.2.: Shastry{Sutherland model with spins situated on the vertices, coup-

lings J1 on the diagonal bonds (dimers) and J2 on vertical and hori-

zontal bonds. The grey hatched region in the middle represents the

unit cell of the system.

AF

FM

helical

phases

AF

FM

spin−2S
dimer

AF
dimer

FM
dimer

?

?

J1 J1

J2 J2

singlet
dimer

Figure 2.3.: Left: Exact T = 0 phase diagram in the classical case of the Shastry

Sutherland model. Right: Schematic phase diagram of the model for

S > 1
2 (right). For S > 1

2 adjacent to the singlet dimer phase two

phases occur whose nature is still discussed controversially.

clearly understood. At a certain critical value xafc (S) > 0 a phase transition of

�rst order [13] from the dimer phase to the intermediate phase takes place.

For J2 = 0 and J1 < 0 the ferromagnetic and antiferromagnetic regimes are

separated by a phase of independent spin{2S dimers.

In the following we present a short overview of information about the intermedi-

ate regimes between the singlet dimer phase and both the (anti{)ferromagnetic

regimes:

L�ow and M�uller{Hartmann [12] �nd rigorous lower and upper bounds on the phase

boundaries of the singlet dimer phase by using various versions of a variational

ansatz for �nite clusters in combination with exact diagonalisation (Lanczos).

12 Two{Dimensional Frustrated Quantum{Spin Models

To �nd a lower rigorous bound they decompose the Hamilton operator H (eq. 2.2)

into cluster terms HN
i in such a way that the clusters cover the whole lattice

without overlapping bonds. Following P. W. Anderson's arguments from 1951 [9]

the lowest eigenvalues EN
0 of the clusters are always lower than or equal to the

ground state energy of the in�nite system E10 if one takes the ground state of H

as variational state for the �nite clusters.

Using this argument for an elementary system consisting of four sites they �nd

xafc = 1
2S+1 as a �rst exact rigorous lower bound which in the case of S > 1=2

is already a better estimate than that of Albrecht and Mila [13] who suggest

xafc < 1
2(S+1) using Schwinger boson mean �eld theory. Even better limits can be

obtained by calculating the ground state energies of clusters with larger system size

(up to N = 31) using the Lanczos method. For a spin{1=2 system of size N = 31

they �nd a best rigorous lower bound for the phase boundary of xc = 0:5914.

For the bound to the ferromagnetic regime they �nd x fmc (S) � � 1
2S which for

S = 1=2 coincides exactly with the xc = �1 boundary. This means that for

S = 1=2 the intermediate regime on the ferromagnetic side of the phase diagram

(J2 < 0) is vanishing. For S > 1=2 they again �nd an improvement of this

result by calculating ground states of clusters of size N > 4 with the Lanczos

method. The best value found so far is for a spin{1 system of size N = 17

x fmc;17(S = 1) = �0:5490.
Using a variational argument L�ow and M�uller{Hartmann also �nd upper bounds by

calculating ground state energies using the Lanczos method for di�erent clusters

up to system size N = 32. Extrapolating these results for N ! 1 they �nd for

S = 1=2 a best upper bound between 0:7126 and 0:7127. For (S = 1) they �nd a

best upper bound of 0:618 and for the limit S !1 a value of xc(S > 1) < 1p
2S

as a criterion for the instability of the dimer phase using a helical product state

as a variational state.

The nature of the intermediate phases adjacent to the singlet dimer phase is a

matter of current investigations:

One might consider a quantum mechanical analogue of the classical helical phase

as described above. Albrecht and Mila [13] indeed �nd such a phase using

Schwinger boson mean �eld theory for �nite values of the spin S vanishing in

a second order phase transition in favor of the N�eel phase at x � 0:91. They also

�nd the system undergoing a �rst order transition from the intermediate phase to

the dimer phase at x � 0:606 which is in clear contradiction with our results.

Using �eld theoretical arguments Chung et al. [14] �nd an intervening regime

with two helical and collinear phases that within this theory appear as Bose{

condensates, whereas Carpentier and Balents [15] �nd an intermediate regime

characterised as a weakly incommensurate spin density wave. Also, they argue

that there has to be an intermediate regime on the antiferromagnetic side (J2 > 0)

of the phase diagram, i.e. a direct dimer to N�eel phase transition cannot occur.

Focussing on the S = 1=2 case a number of observations on the phase boundary

of the dimer phase have been made:

By use of exact diagonalisation and fourth order perturbation theory Miyahara and

Ueda [8] �nd a direct dimer to N�eel transition of �rst order at x � 0:7. Although

this value is widely accepted one could put this result into question as it was

2.1 Shastry{Sutherland Model 13

obtained by extrapolating three systems of di�erent shapes. On the other hand

we �nd that the shape of the clusters taken into account has a strong inuence

on the ground state energy.

L�auchli et al. [16] performed large scale exact diagonalisation calculations up to

system size N = 32 which result in an upper critical value of xc = 0:67 for the di-

mer phase. They suggest that an intermediate plaquette phase might be found in

the regime 0:67 < x < 0:7 and exclude the possibility of an intermediate colum-

nar phase. Further numerical studies based on an operator variational method

introduced by Munehisa and Munehisa [17] support a helical intermediate phase

again.

Examinations applying perturbational approaches do not seem to help �nding the

exact critical value for the transition boundary:

Koga and Kawakami [18] suggest a plaquette phase in the interval 0:677 < x <

0:861 using studies based on di�erent starting points for their perturbation theory:

isolated dimers, isolated plaquettes and Ising{limit.

In contrast to them Weihong, Hamer and Oitmaa [19, 20] defer such an interme-

diate plaquette phase or helical phase. Applying high order perturbation theory

and comparing the ground states of di�erent phases they �nd that only a colum-

nar phase might occur in the range 0:67 < x < 0:83. Investigating the behavior

of the gap above the singlet dimer ground state they �nd x = 0:691 as an upper

bound for the dimer phase.

Knetter et al. [21, 22] suggest x = 0:63 as a value for the breakdown of the

dimer phase by investigating the behavior of the gap as a function of the inverse

frustration x using the perturbative unitary transformation method.

After the synthesis of SrCu2(BO3)2 by Smith and Keszler [23] in 1991 the

Shastry{Sutherland model came back into focus of new studies. The orthob-

orate SrCu2(BO3)2 has a layered structure composed of Cu(BO3) {planes which

are slightly buckled for temperatures below TS = 395K as shown on the left hand

side of �g. 2.41.

At TS a second order phase transition occurs [25] where the layers become com-

pletely at. The planes are separated by the Sr{atoms in the crystallographic

c{axis. The top{view on a representative Cu(BO3) plane (shown on the right

hand side of �g. 2.4) helps to visualise the properties of the Cu(BO3) compounds.

The magnetism is determined by the the S = 1=2 spins located on the Cu2+ ions

which form dimers by pairs (connected by lines) with interaction strength J1. As-

suming an exchange path over the borate groups to the next{nearest Cu2+ ions

with couplings J2 one can map this structure onto the Shastry{Sutherland model

(�g. 2.2) as was seen �rst by Miyahara and Ueda in 1999 [8], nearly 20 years

after Shastry and Sutherland had published their observations.

Every second Cu(BO3) plane is rotated by �=2 in such a way that each dimer

has a rotated dimer above and below. The tetrahedal inter{plane interaction

geometry is fully frustrated. Both the dimers, above and below, must be excited

out of the singlet ground state for this interaction to become relevant so that

[26] the spin{gap � and thermodynamic properties at low temperatures can well

be described by the two{dimensional Shastry{Sutherland model.

1Courtesy to A. B�uhler [24] for kindly providing the pictures.

14 Two{Dimensional Frustrated Quantum{Spin Models

a

c b

Cu

Cu

B

O

O

O

Figure 2.4.: Crystal structure of SrCu2(BO3)2 : A layered compound of slightly

buckled Cu(BO3) planes (for temperatures T < 395K) separated by

Sr{atoms on the left hand side. On the right hand side a top{view

on a part of a single Cu(BO3) plane is shown with nine unit cells.

The �rst experimental measurements in form of the magnetic response have been

performed in 1999 by Kageyama et al [27]. The magnetic susceptibility measured

on powder displays a maximum at � 20K and a rapid drop towards zero with

decreasing temperature that indicates an energy gap in the magnetic spectrum.

Applying a simple exponential �t in the low temperature regime they derive a

singlet{triplet gap of � � 19K and con�rm the existence of a singlet ground state.

Another exponential �t to the spin{lattice relaxation time gives a magnetic gap

of � � 30K = 2:6meV to the �rst excitation. They conclude that SrCu2(BO3)2
is a realisation of the Shastry{Sutherland model in the dimer phase.

A year later Kageyama et al. [28] publishes inelastic neutron scattering data ob-

tained from a large crystal con�rming a small gap � � 34K. The value of the

singlet{triplet gap was con�rmed by other experiments like electron spin reson-

ance [29], far infrared spectroscopy studies [30], nuclear magnetic resonance [31]

or Raman experiments [32] with � = 34K. These experiments also support the

singlet nature of the groundstate. Only for the ESR experiments a residual inter-

action, like a Dzyaloshinsky{Moria interaction, needs to be taken into account to

explain the excitation from a singlet to a triplet ground state [29, 33].

Concluding the experimental aspects of SrCu2(BO3)2 the exchange couplings

are positive so that the crystal is an antiferromagnet. The ratio x = J2=J1 is

suÆciently small so that the system is in the dimer phase. One can �nd a number

of �ts of the model parameters to experimental data that in general are based on

a simultaneous �t of the gap and the magnetic susceptibility [8, 19, 34, 26, 17].

The range of given x values for the inverse frustration is quite close to the critical

value xc � 0:69 but a direct observation of a real substance at or close to the

quantum critical point has not been accomplished so far.

A review of the theoretical results of the Shastry{Sutherland model applied to

SrCu2(BO3)2 can be found in [35].

2.2 Plaquette Model with Four{Spin Interaction 15

2.2. Plaquette Model with Four{Spin Interaction

In this section we introduce a two{dimensional Heisenberg model suggested by

J. Zittartz which similarly to the Shastry{Sutherland model (eq. 2.2) is construc-

ted in such a way that it has an exactly known twofold degenerate eigenvalue

which in the dimer phase regime of the phase diagram is the ground state. The

Hamilton operator for this model reads

H = J2
∑
<i;j>

SiSj + J1
∑
k

plaq.

(
3

4
+ Sk1S

k
3

)(
3

4
+ Sk2S

k
4

)
: (2.3)

The �rst sum corresponds to a standard Heisenberg model with exchange coup-

lings J2 between all nearest neighbors < i; j >. The second term represents the

two{spin and four{spin interactions with coupling J1 between spins on an indi-

vidual plaquette k as depicted in �g. 2.5. The diagonal two{spin interactions on

the plaquettes correspond to the twofold degenerate (dimer) ground state.

k
k

1 2

4 3

J2

J2

J1

Figure 2.5.: Plaquette model proposed by J. Zittartz. Left: A Heisenberg model

with exchange couplings J2 between spins of size 1=2 located on

the vertices and additional plaquettes k. Right: A representative

plaquette (marked fat on the left hand side) with interactions between

two next{nearest neighbored spins located on sites 1 and 3, and 2

and 4 interacting with coupling J1 and a four{spin interaction of size

J1 between all four spins belonging to the plaquette k.

In �g. 2.6 the phase diagram of this model is shown for the elementary four{site

lattice. For J2 < � jJ1j < 0 one �nds the ferromagnetic region with transition

to the antiferromagnetic region for J2 > jJ1j > 0. In the regime J1 > J2 > 0

the dimer phase is expected with the twofold degenerate ground state described

above.

Similarly to the Shastry{Sutherland model an intermediate regime of a nature to

be discussed between the antiferromagnetic phase and the dimer phase must be

assumed. The phase boundaries on both sides of the dimer phase are not known

exactly. On the antiferromagnetic side of the phase diagram the boundary of

the dimer phase is assumed to be located in the region between J2 = J1=2 and

J2 = J1 [36].

From a phenomenological point of view this plaquette model might be of interest

as it features four{spin interactions of a simple character which currently are of

16 Two{Dimensional Frustrated Quantum{Spin Models

1

J2

J
AF

FM

Dimer
Phase

Figure 2.6.: Phase diagram of the plaquette model proposed by J. Zittartz on a

four{site lattice. The phase boundaries of the dimer phase are not

known exactly for the in�nite size system. On the antiferromagnetic

side of the diagram the boundary is located between J2 = J1=2 and

J2 = J1.

special interest in related topics of physics like the spin{ladder with cyclic exchange

[24] or the parent compound of high{Tc superconductors [37]: In addition to

the bilinear exchange also biquadratic exchange terms, so called
'
cyclic exchange`

terms, are important for the minimal model describing the magnetic part of cuprate

systems [38, 39, 40, 41]. Also in other parts of condensed matter physics multiple

spin interactions are of relevance like the nuclear magnetism of 3He [42] or the

spin structure of a Wigner crystal [43].

3. Method

In this chapter we describe the methods and algorithms used to cope with the

problem to diagonalise a Hamiltonian matrix of very large size.

The most simple way to study a Hamiltonian like those described in Chapter 2 for

the Shastry{Sutherland model

H = J2
∑
<i;j>

SiSj + J1
∑

<i;j>dimer

SiSj (3.1)

is to explicitely write down the matrix elements ofH in a basis of
{
Sz
i ; i = 1; 2; : : : ; n

}
,

where we choose the z{axis as the quantisation direction, and then diagonalise H

with standard eigenvalue routines like dspev() of the LAPACK/BLAS library on

a computer.

Unfortunately this approach is quite limited as for a spin{S system of size n the

number of degrees of freedom is (2S+1)n. That means for a spin{1
2 system with

system size n = 15 one has to diagonalise a matrix with 215�215 = 32768�32768
elements which is about the upper limit of what today's computers can solve in

reasonable time periods.

To study much larger system sizes we use the Lanczos method [44] which gives

numerically exact eigenvalues on either end of the spectrum. As this method

is well known there are implementations available, such as the numerical library

ARPACK.

In this thesis we apply di�erent symmetry operators to reduce the size of H

signi�cantly, namely the conservation of total Sz magnetisation, spin inversion,

and for periodic systems additionally translational symmetry. Other symmetries

like rotational invariance and reexion have not been implemented as for the

largest system considered (6 � 6 Shastry{Sutherland model) these symmetries

don't apply.

For the such reduced Hamiltonian H we use the so called hashing technique as

well as the Lin{algorithm [45] to save the states of the subsector of the Hilbert

space in a fast accessible and memory saving way which is crucial to calculate the

eigenvalues in acceptable time frames.

Additionally, we apply parallel programming techniques like MPI and OpenMP

(see 3.7) to distribute calculations on several processors. This is feasible as the

number of states grows that strongly with increasing system size that most of

the time the program uses is spent on looping through the subsector to calculate

the Lanczos{vector for the next Lanczos iteration. Thus, the program part with

strictly serial parts (like initialisation/checkpointing and the ARPACK subroutine)

is becoming less and less important.

18 Method

3.1. Symmetry{Operators

Applying symmetry operators on the model one separates the Hilbert space of the

Hamilton operator H into di�erent sectors of smaller size than the original Hilbert

space.

In this thesis the total Sz conservation, spin inversion and | in case of periodic

boundary conditions and depending on the speci�c geometric properties of the

lattice investigated | the translation operator will be used. All these operators

commute with the Hamilton operator (e.g. [H;Sz] = 0) and with each other so

the resulting eigenvalues are conserved quantum numbers.

3.2. Lanczos Method

The Lanczos{ or Recursion{Method is a standard method for diagonalising lin-

ear systems of equations and calculating eigenvalues and eigenvectors of sparse

matrices in general [46, 47, 48]. For dense matrices one would consider using the

Householder or (for the non{symmetric case) the Hessenberg method which take

O(N3) steps, two magnitudes more than the O(N) steps needed by the Lanczos

method.

Especially the Hamiltonians examined in this thesis are hermitian and sparsely

occupied and thus can be worked on well with the Lanczos method.

The main idea is to tridiagonalise a hermitian matrix H of size n�n with a unitary
transformation.

XyHX = T with XyX = 1 (3.2)

where T is tridiagonal, real and symmetric:

T =

�1 �1
�1 �2 �2

�2 �3

. . .

�n�1 �n�1
�n�1 �n

(3.3)

The column vectors X = (x1; x2; : : : ; xn) of X are the so called Lanczos vectors

which are orthonormal:

x
y
i xj = Æi j : (3.4)

That is:

Hx1 = �1x1 + �1x2;

HX = XT , Hxi = �i�1xi�1 + �ixi + �ixi+1 2 � i � n � 1; (3.5)

Hxn = �n�1xn�1 + �nxn:

Starting with an arbitrarily selected unit vector x1 these equations will give all the

�i ; �i and xi :

�1 = xy1Hx1 (3.6)

3.2 Lanczos Method 19

�1 will be real since H is hermitian. In the next step calculate

�1x2 = Hx1 � �1x1 (3.7)

and use xy1x1 = 1 to �nd �1 and x2. Similarly iterate through all the equations:

�i = xyi Hxi ; (3.8)

�ixi+1 = Hxi � �x�1xi�1 � �ixi : (3.9)

H being hermitian ensures that all the Lanczos vectors are orthonormal, e.g.:

x
y
1x2 =

1

�1
x
y
1(Hx1 � �1x1) =

1

�1
(�1 � �1) = 0: (3.10)

The iteration ends when calculating

�n = xynHxn (3.11)

since we can show that

u = Hxn � �n�1xn�1 � �nxn (3.12)

coming out of the last equation is orthogonal to all the Lanczos vectors xi and

must therefore be zero.

A good test for the accuracy of the algorithm is to check

�n = juj = 0: (3.13)

In practical applications like computer simulations we have to keep in mind that

rounding errors will result in that the Lanczos vectors will not be perfectly ortho-

gonal and thus �n 6= 0. One needs to re{orthogonalise with a projection when

calculating a new vector xi to make it orthogonal to a previously calculated vector

xj :

xi ! xi � xj(x
y
j xi): (3.14)

Depending on how close the eigenvalues are to each other in extreme cases one

needs to apply this correction after each iteration step.

A second problem that potentially can occur is that one of the �i might be 0 so

that the division will fail. This is due to the initially arbitrarily chosen Lanczos

vector x1 to be orthogonal to one of the eigenvectors of H. To overcome this,

one simply needs to choose the next Lanczos vector xi in such a way that it will be

a unit vector orthogonal to all previous ones and to continue with the calculation.

In practice this problem should occur quite seldomly.

The advantage of the Lanczos method is that one needs to keep only three vectors

of size n in memory within one iteration step in contrast to explicitely saving the

complete matrice H of size n � n. Additionally, a subroutine calculating the

matrix{vector product Hx is needed. Only if one needs the eigenvectors all the

Lanczos vectors have to be saved.

20 Method

3.3. ARPACK (Arnoldi Package)

The Lanczos method described above is a member of a class of methods called

Krylov subspace projection methods that allow solving large scale eigenvalue prob-

lems. The Arnoldi method generalises the Lanczos method to the non-symmetric

case for which an eÆcient algorithmic variant has been developed [49] that is

called Implicitely Restarted Arnoldi Method. This method has been implemented

in the numerical library ARPACK (ARnoldiPACKage)1 which is designed to solve

large scale hermitian, non{hermitian, standard or generalised eigenvalue problems.

One can focus on speci�c parts of the spectrum of a matrix A, e.g. search for

lowest real k eigenvalues or, as a second example, complex eigenvalues with the

largest real part. Eigenvectors can also be calculated on user's request (of course

with additional demand on memory). The matrix A does not need to be provided

explicitely but instead the action of the matrix on a vector w Av is all that is

needed. This product is feeded into the so called reverse communication interface

provided by the library. Eigenvalues and eigenvectors are calculated to the level of

machine precision. This can be changed to arbitrary precision on user's request.

One of the most important features of the library is the reverse communication

interface mentioned above. As it avoids using a �xed subroutine interface it allows

the user to express the matrix{vector multiplication in a convenient data structure

to meet his needs. Moreover, if the matrix A is not available explicitely, the user

is free to provide the matrix{vector product w = Av through a subroutine call or

a simple code segment as shown in the following pseudocode example:

while (ok==1) {

dsaupd(ido, bmat, n, which, ..., workd, ..., info);

ok=((ido==1)||(ido==-1));

if (ok) {

/* user provides matrix-vector-multiplication */

w = workd+(ipntr[0]);

v = workd+(ipntr[1]);

matvecmult(v,w);

} else {

/* algorithm sufficiently converged */

/* extract eigenvalues etc */

dseupd(...);

}

}

In this example the user provides a subroutine matvecmult() which calculates the

action of the matrix A on the vector v and saves the result in the vector w . Both

vectors are part of the ARPACK speci�c array workd[] and the location within this

array is saved in the second ARPACK speci�c array ipntr[]. In general the user

can use any available mechanism to create the vector w . If dsaupd() indicates

that convergence has achieved the user needs to call a subsequent postprocessing

subroutine (in this special case dseupd()) to recover the results in a useful form.

1http://www.caam.rice.edu/software/ARPACK/

3.4 Hashing Technique 21

When starting the iteration process the user might want to provide a certain

starting vector but he doesn't need to. In this case a randomly created unit vector

is used as the starting vector. This feature is selected by setting the variable info

to 1 or 0 when calling dsaupd() the �rst time.

As ARPACK relies on the well known standard numerical BLAS and LAPACK

routines which in general are provided by the computer manufacturers in highly

optimised versions, this library also performs very well on many di�erent types of

computers. Secondly, as this library is written in standard Fortran 77 it is easily

portable to all architectures providing a f77{compiler.

As a contributed addition to the ARPACK library a checkpointing variant of certain

subroutines of the library is available which is of essential help in situations where

the user can run jobs only for a given period of (wall clock) time which de�nitely is

not long enough to calculate a certain task completely. I.e. after a certain number

of iterations the library hands over a special value of ido (see the pseudocode

example above) so that the user can save all needed data on disk.

Another advantage of this library is that it additionally provides parallelised fron-

tends either for MPI or BLACS. For that reason P ARPACK is running on many

di�erent parallel systems.

During the calculations for this thesis, the checkpointing ability mentioned above

has also been ported to the MPI version of the P PARPACK library which wasn't

available before.

3.4. Hashing Technique

When applying one or more of the symmetry operations described in 3.1 the

original Hilbert space will be reduced to a number of representative states (usually

the
'
minimum` state) [45]: Consider a spin{S system of size N with total Stotal

z =

0 conservation. The Hilbert space is composed of all those spin con�gurations{
Sz
i ; i = 1; : : : ; N

}
that have total magnetisation

∑N
i=1 S

z
i = Stotal

z = 0.

Its dimension will be M, where M is much smaller than the dimension of the

original Hilbert space (2S + 1)N . Labelling of the sites i = 1; : : : ; N is arbitrary

(but should be chosen well depending on the geometry of the system investigated

and of the symmetry operators applied). But once chosen these basis states of

the reduced Hilbert space must be treated consistently.

To implement numerical calculations usually a given spin con�guration
{
Sz
1 ; : : : ; S

z
N

}
is de�ned as a representative integer I according to

I =

N∑
i=1

s(i)(2S + 1)i�1; (3.15)

with s(i) = Sz
i +S = 0; : : : ; 2S resulting in a one{to{one correspondence between

a single integer and a spin con�guration.

In the original Hilbert space all possible integers I from 1 to (2S+1)N would then

be needed.

In the example (total Sz = 0 conservation) only M of all the integers I will

occur so that one has to introduce some kind of lookup table labelling the allowed

I{states in an arbitrary way
∣∣1〉; ∣∣2〉; : : : ; ∣∣M〉

.

22 Method

When applying the Hamiltionian H on such a spin con�guration many other spin

con�gurations will be generated for which one has to lookup the table
∣∣1〉, ∣∣2〉,

: : : ,
∣∣M〉

generated before.

The problem is to �nd the locations of these spin con�gurations in the storage

table.

A naive way to �nd the right location is to simply introduce a vector J(I) =

position of the spin con�guration represented by I in the table. However, it is

obvious that one has to allocate up to (2S +1) places for J(I) although most of

the places will be useless null entries:

In case of N = 4, Stotal
z = 0, S = 1

2 one will have the basis of M = 6 representat-

ives
∣∣0011〉; ∣∣0101〉; ∣∣0110〉; ∣∣1001〉; ∣∣1010〉; ∣∣1100〉. But with the naive method

described above one needs to allocate 11002 = 1210 places (the value of the

numerically largest spin con�guration of the subsector investigated) of which only

6 actually would be used. The relation of unneeded places to allocated places is

much worse for larger system sizes N so this method is unfeasible.

A somewhat more sophisticated way to create a storage table is the so called

hashing technique:

A hashing function h(I) is constructed that gives a correspondence between theM

representatives I 2 {∣∣1〉; ∣∣2〉; : : : ; ∣∣M〉}
and a position vector h(I). This function

often is de�ned as [50]

h(I) = [I(modK)] + 1: (3.16)

The size of memory used by this function is about K which is of the order of M.

Usually K is chosen as the smallest prime number larger thanM. For some repres-

entatives I1; I2; : : : it happens that they have the same remainder, i.e. '
collisions`

will occur.

When choosing K = 3 in the example described above (one wouldn't really choose

3, but here just for demonstration) the representatives
∣∣0011〉,∣∣0110〉, ∣∣1001〉,∣∣1100〉 will have the same remainder and thus will

'
collide`.

For that reason one either has to chose the prime number K that large that no

collisions do occur or otherwise create a two{dimensional array in which for each

remainder the list of corresponding representatives is kept.

A sample piece of code in the programming language C for this algorithm is

provided in A.1.

We actually use this code in case of translational invariance. That means that in

case of the 6 � 6 Shastry{Sutherland model (consisting of 504:174:594 repres-

entatives) the hashing technique is applied with a suÆciently large prime number

(PRIME= 5:915:587:277) so that no collisions actually do occur. That means

that the hashing algorithm used in the simulations should not be slower than the

more sophisticated Lin{Algorithm described in the following section. By applying

the parallel programming techniques described below the program is eÆciently

using a whole cluster node containing 32 processors and 112GB of available main

memory of which about 52GB (PRIME�8 bytes + number of representatives �8
bytes) are left over for the hash array without any problems.

3.5 Lin{Algorithm 23

3.5. Lin{Algorithm

Although the hashing technique described in 3.4 is quite simple to implement it

nevertheless is really memory consuming as it allocates much more places (de-

pending on the prime number used) than needed for the number of representative

states contained in the Hilbert subspace being investigated.

In case of total Sz conservation a more sophisticated way to create a lookup table

is the algorithm developed by Lin [45]. In contrast to the hashing technique which

in e�ect is a one dimensional sequential search through a lookup table he suggests

a two dimensional storage table (that in principal can be extended to even higher

dimensions):

Divide the lattice investigated in two parts A and B and de�ne two integers

Ia =

[N=2]∑
i=1

s(i)(2S + 1)i�1 (3.17)

Ib =

[N+1=2]∑
i=1

s(i + [N=2])(2S + 1)i�1; (3.18)

with [X] as the integer part of number X. Correspondingly de�ne two vectors

Ja(Ia) and Jb(Ib) so that the position of the spin con�guration represented by the

integer I results as the sum

J = Ja(Ia) + Jb(Ib): (3.19)

One immediately sees

I = (2S + 1)[N=2]Ia + Ib (3.20)

and that (Ja; Jb) behaves just like a two{dimensional coordinate (x; y). The ad-

vantage of this approach is that the maximum length of Ja and Jb is (2S +

1)[(N+1)=2] which is about the square root of that of J(I). This surely is a con-

siderable improvement compared to the hashing technique described above.

When a spin con�guration represented by I is changed to another con�guration

represented by ~I due to the application of the Hamiltonian H on can easily �nd ~Ia
and ~Ib and then immediately the resulting ~J.

Thus, this method gives a one{to{one correspondence between di�erent spin

con�gurations and their position in the lookup table, and it uses very little memory

compared to the hashing technique described before.

We have applied this algorithm also in the case of total Sz conservation and

additional spin inversion which just halves the memory needed for this kind of

lookup table. See A.2 for a sample code implementation in C.

In case of other symmetries applied (like translational invariance in periodic sys-

tems) this method is rather diÆcult to implement and depends extremely on the

lattice being investigated. But in case of just total Sz = 0 conservation and spin

inversion this method is quite simple to implement.

Here an example for a spin{1
2 system of size 4 with total Sz = 0 conservation

(table 3.1):

24 Method

Con�guration a b Ia Ja(Ia) Ib Jb(Ib) J = Ja + Jb
1100 11 00 3 0 0 0 0

0101 01 01 1 0 1 1 1

1001 10 01 2 1 1 1 2

0110 01 10 1 0 2 3 3

1010 10 10 2 1 2 3 4

0011 00 11 0 0 3 5 5

Table 3.1.: Spin con�gurations, their representations Ia and Ib, their '
coordinates`

Ja and Jb and their positions in the storage table J for a spin{
1
2 system

of size 4 with total Sz = 0 conservation.

3.6. Serial Programming Approach

As a very �rst step in this project we created a program to calculate eigenvalues

that is structered as follows:

init();

hash_create(); OR lin_create();

rcl() {

while (ok) {

dsaupd() /* ARPACK */

checkpoint(); /* test whether to checkpoint and quit the program */

if (ok) {

/* now the user has to provide the action of matrix A on vector x */

for all possible spin configurations <i> in the reduced Hilbert space do {

/* apply interactions with symmetries corresponding

to the model investigated */

model() {

newstate=exchangebits()

/* apply translational symm. and find representative in the

reduced Hilbert space */

findtransmin(newstate)

/* additionally apply spin inversion and find representative in the

reduced Hilbert space */

findtransmin(inversionmask^newstate)

}

for all interactions <i> defined in model

y[statecount]=coeff(i) * x[representative(i)]

}

} else {

/* ARPACK converged successfully; postprocessing to find eigenvalues */

dseupd()

}

}

}

output(); /* results to be written on disk */

After an initialisation phase init() where global arrays and variables are de�ned

and allocated the storage/lookup table in which the positions of the spin con�g-

urations in the reduced Hilbert space are saved will be created either via hashing

3.6 Serial Programming Approach 25

technique or Lin algorithm (in case of total Sz magnetisation and/or spin inver-

sion, only) by using the hash_create() or lin_create() subroutine.

Later the program will enter ARPACK's reverse communication interface in rcl().

After an initial call to the ARPACK routine dsaupd() which sets up the internal

ARPACK infrastructure and giving out a �rst (randomly created) unit vector x

the program will provide the user's individually implemented matrix{vector multi-

plication, in this case it is done serially by means of a loop over all allowed spin

con�gurations.

The subroutine model() is called for each indiviual spin con�guration which applies

the interactions between the distinct spins of the model investigated.

The program has been written in such a way that many di�erent models can be in-

tegrated into the program easily (e.g. it is no problem to examine one{dimensional

spin{chains or three{dimensional cubic lattices), as all the interactions beetween

the spins need to be written down explicitely with calls to the exchangebits()

subroutine.

During this stage of the program also the model speci�c symmetry operations are

applied (via findtransmin() for translational invariance and

findtransmin(inversionmask^newstate) for translational invariance combined

with spin inversion). Of course, in this part of the program very speci�c proper-

ties (boundary conditions, geometry of the model etc) of each model investigated

need to be implemented. After applying the symmetry operations the represent-

ative spin con�guration has to be found (also being part of findtransmin())

which usually is the
'
minimum` state of all possible con�gurations belonging to

each other.

The matrix{vector multiplication is saved in a vector y which itself is feeded

back into the ARPACK routine dsaupd() in the next loop step of the Lanczos

algorithm. Either a new vector x is o�ered to the user's matrix{vector multi-

plication, or the reverse communication process will be stopped via the variable

ok because the convergence criterion has reached or because checkpointing via

checkpoint() should be performed to temporarily interrupt the program as the

maximum CPU time has been reached (or in terms of loop steps: the maximum

number of allowed dsaupd() iterations has taken place). In that case the program

needs to be set up again with a certain ag so that it will read in the checkpointing

information saved before.

In case the convergence criterion is ful�lled the program enters the postprocessing

subroutine dseupd() described in 3.3 which provides the speci�ed eigenvalues

and/or eigenvectors the user is interested in. The results are exported to harddisk

in the �nishing routine output().

Using this serial program we were able to produce results for the Shastry{Sutherland

model with up to a system size of N = 32 (equivalent to 37:582:307 representat-

ive spin con�gurations). To calculate a single value close to the critical point on

a Sun Fire 15K machine with UltraSPARC III 900MHz processors this program

needed about 14 days of computing time.

For the Plaquette model with double the number of diagonal bonds and additional

four{spin interaction the program needed nearly three weeks (19 days) for a value

next to the critical point. Having this experiences in mind it was clear that addi-

26 Method

tional techniques had to be applied to calculate the eigenvalues for larger system

sizes.

3.7. Parallel Programming Environments

In this section we will give a short overview of the two most commonly used parallel

computing environments. On the one handMPI (Message Passing Interface) [51]

which is available especially on so called distributed memory machines as well as on

symmetric multiprocessor machines and on the other hand OpenMP (Open Multi

Processing) which is available exclusively on symmetric multiprocessor (SMP)

machines.

On SMP architectures a number of processors share system resources like memory

and I/O subsystems that can be accessed equally from all the processors. They are

typically controlled by a single operating system (kernel) which schedules processes

containg a single or more threads on processors in such a way that the load is

balanced evenly on the system. The processors usually are connected by a bus or

a crossbar switch.

In contrast to this architecture, distributed memory machines consist of nodes

that are connected by a network that is typically high{speed (HiPPI, Myrinet,

standard Gigabit Ethernet to name a few). Each node has its own processor,

memory, and I/O subsystem and is running an individual instance of the operating

system, i.e. each node can be considered a workstation.

The main di�erence between the two models is how data is shared between di�er-

ent processors. On a SMP machine in an OpenMP process with several threads

the corresponding processors have direct access to shared data in memory. On the

other hand an MPI process on distributed memory architecture has to explicitely

send data to and receive data from other processors over the network mentioned

above.

An important aspect one has to keep in mind is what is called Amdahl's law. This

law gives an idea of the speedup of a program running in parallel compared to the

same program running on a single processor (i.e. the serial program version):

S(n) =
n

n � b + (1� b)
(3.21)

where n is the number of processors being used and 0 � b � 1 is the strictly serial

part of the program that cannot be parallelised.

It turns out that the speedup behaves logarithmic, i.e. depending on the serial

part of the program it doesn't make sense to allocate more than a few processors.

In principle this law is valid for both, MPI and OpenMP (see �gure 3.1).

3.7.1. MPI

MPI is an implementation of a standard wich usually is delivered in an optimised

version by the computer manufacturer in form of a library that needs to be linked

to the user's program:

cc -o a.out prog.c -lmpi

3.7 Parallel Programming Environments 27

0

5

10

15

20

25

0 5 10 15 20 25 30

sp
ee

du
p

number of processors

b=1%
b=8%

b=10%
b=15%

Figure 3.1.: Only for very small serial parts of a program the CPU time consump-

tion of the program scales well with the number of the processors

allocated.

When starting a program the user has to provide the number of processors on

which the program should run, i.e. the same program runs in n instances identic-

ally on all the processors managing and controlling all their own memory and I/O

resources. The user has to take care what data each processor is working on (data

distribution) and that data is exchanged in an explicit and controlled way between

the processors (communication) so that no deadlock situation and other race con-

ditions can occur. This is achieved generally by di�erent types of communication:

blocking and non{blocking point{to{point or broadcasting communication (�g.

3.2) using so called tags which are nothing but simple numbering labels for each

sending and receiving action of a certain amount and type of data.

For instance, to transfer an array x of length n of data type double from processor

'src' to processor 'dest' with non{blocking point{to{point communication one

would code (in C) the following lines:

/* Using non--blocking communication ensures that deadlocks don't occur, */

/* i.e. a process can send and reveive data at the same time. */

/* procsendtag of sending process and procrecvtag on receiving

process must be equal. */

MPI_Isend(x,n,MPI_DOUBLE,dest,procsendtag,MPI_COMM_WORLD,&procsendireq);

MPI_Irecv(xneu,n,MPI_DOUBLE,src,procrecvtag,MPI_COMM_WORLD,&procrecvireq);

/* checking whether data transfer has finished */

MPI_Test(&procsendireq,&procsendmpiflag,MPI_STATUS_IGNORE);

MPI_Test(&procrecvireq,&procrecvmpiflag,MPI_STATUS_IGNORE);

/* continue checking end of sending transfer indicated by flag==1 */

while (1 != procsendmpiflag) {

28 Method

proc. 2 proc. 3

comm.
blocking
comm.

non−blocking

proc. 1

a.out

Figure 3.2.: General example for the MPI concept: A process a.out runs on three

processors with non{blocking communication between processors 1

and 2 and blocking communication between processors 2 and 3.

MPI_Test(&procsendireq,&procsendmpiflag,MPI_STATUS_IGNORE);

MPI_Test(&procrecvireq,&procrecvmpiflag,MPI_STATUS_IGNORE);

}

/* continue checking end of receiving transfer indicated by flag==1 */

while (1 != procrecvmpiflag)

MPI_Test(&procrecvireq,&procrecvmpiflag,MPI_STATUS_IGNORE);

3.7.2. ARPACK and MPI

As the ARPACK library used in this project provides support for the MPI parallel

programming interface in form of the P ARPACK program package we at �rst

chose this way to implement a parallel version of a program to calculate the lowest

eigenvalues.

As explained in section 3.3 the ARPACK library has a so called reverse communic-

ation interface for which the user has to provide the matrix{vector multiplication

in any convenient programming technique (here: MPI) which �ts best the user's

needs.

Both vectors used in the Lanczos iterations, x and y (with y = Ax), are equally

distributed on all the processors the user has allocated when starting the program.

Vector x is accessed read{only in contrast to vector y that needs to be calculated.

With a number of di�erent approaches we tried to enhance the serial program in

such a way that is was able to reliably access the data on the other processors.

A �rst naive approach was to implement communication in such a way that each

time processor i needed a single element of the (read{only) vector x from pro-

cessor j it immediately started a communication process. This process generally

consists of two parts. Processor i has to transmit the index number of the element

to processor j which at the same time has to listen to processor i to be able to

receive the index number.

In the second step processor j starts sending back the element of the array x

to processor i which has to listen for processor j in that moment. Afterwards

3.7 Parallel Programming Environments 29

processor i can continue its calculation of vector y = Ax . This process has been

implemented in non{blocking communication so that processor i doesn't have to

wait for the answer of processor j and also to avoid dead{lock conditions since of

course not only processor i tries to calculate components of y but also all other

processors f0; : : : ; i � 1; i +1; : : : ; numproc � 1g where numproc is the number

of processors allocated by the user.

This leads to an extremely complex communication pattern for two reasons:

a) Each processor needs to send data to all other processors and has to listen to

all other processors to be able to receive data and b) within each communication

event only a single element of x is transmitted.

The implementation lead to a complex program code that at the same time

became about 300 times slower than the serial program version.

In a second approach we tried to overcome problem b) by introducing structures

so that processor i was collecting a whole group of index numbers needed from

processor j so that many individual communication requests could be bundled to

a single one. This approach on the one hand lead to an even more complex

code as new structures and the limit of the maximum number of elements to be

transferred needed to be introduced. On the other hand we gained a factor of

100 in performance compared to the �rst version. But still this parallel program

version was slower by about a factor of three compared to the serial version.

We then turned to eliminate problem a) as still all processors were communicating

with all processors.

Starting over we designed the communication process in a di�erent way.

Due to the complex nature of the interactions of the models studied in this thesis

the read{only vector x cannot be restructured in such a way that all elements of

interest for a certain processor can be saved locally. For that reason we ordered the

communication in a closed ring so that each processor received information from

its predecessor and sends information to its successor exclusively. This structure

also has the advantage that each processor doesn't have to maintain lists for all

other processors but only for its direct neighbors.

Additionally with each single communication process the largest possible number

of elements is transferred: the complete processor's portion of the vector x is

transferred at once to the successor.

Implementing this communication pattern lead to the following scenario for cal-

culating y = Ax :

The �rst step of the matrix{vector multiplication was to use all elements of the

vector x that initially were located on the local processor.

Then the circular communication started on all processors by sending away their

portion of x to their successors and at the same time the new elements of x

receiving from their predecessors. After the communication event each processor

was looping again over all spin con�gurations of the subspace the same way as

during the �rst step with the initially local elements.

This is in principle the structure used in the serial program version with an addi-

tional circular communication structure leading to a further performance gain so

that the parallel program was about as fast as the serial version.

This MPI approach revealed an essential structural problem arising from the large

30 Method

size of the matrix A. As we cannot explicitely save the matrix elements we have to

calculate them
'
on the y` leading to a loop in the program that iterates over all

possible spin con�gurations to apply the lattice speci�c interactions of the model

investigated. In fact, each time processor i received a new portion xj from its

predecessor i � 1 the loop running over all representative spin con�gurations has

to be started again in order to �nd the elements of xj needed.

The result is that this version of a parallel programming approach didn't evolve a

reasonable scaling behavior. Independent of the number of processors allocated it

needed about the same wall clock time as the serial program.

An additional problem arises. Using MPI we are working with a distributed memory

architecture. For that reason the storage/lookup table introduced in section 3.5

has to be kept on each processor. As this array is one of the most memory con-

suming parts of the serial program memory management for the parallel program

becomes practically impossible for the large sizes we want to study.

For these reasons a di�erent programming approach needed to be found.

3.7.3. OpenMP

In contrast to MPI the OpenMP standard is implemented in the compiler. The

user has to mark those parts of the program to be auto{parallelised with so called

OpenMP compiler directives that look similar to preprocessor statements (here

the C compiler is used):

#pragma omp parallel

This technique is available also for Fortran and C++ Compilers but one should

keep in mind that the C++ version always will be behind the development of the

features for the other programming languages.

When compiling the sources the user needs to explicetly switch on the compiler's

OpenMP features (here the Sun version is shown):

cc -xopenmp -o a.out prog.c

When not using the OpenMP interface of the compiler (i.e. leaving away the

-xopenmp switch the #pragma line shown above is treated like a comment (thus

being simply ignored).

When starting a program the user has to provide the number of threads the process

is started with by setting an environment variable. In the following example a

program is started running with 5 threads (syntax assuming one of the bourne

shell derivatives):

$ export OMP_NUM_THREADS=5

The program then will start corresponding to the so called Fork{and{Join model

[52], i.e. it �rst will run like a normal serial program on a single processor (using

a single thread, called master thread) and subsequently allocating then additional

processors for the other threads speci�ed by the environment variable mentioned

above (�g. 3.3) when entering the �rst parallel region that has been speci�ed by

the user:

During the serial parts of the program the user principally can decide whether to

keep the unused processors or to free them so other users have access to them.

In general the user will keep them for own purposes (because the time not using

3.7 Parallel Programming Environments 31

Master thread

Team of threads

Team of threads

Master thread

Sequential part

Sequential part

Parallel region

Parallel region

Figure 3.3.: Fork{and{Join model used by OpenMP programs with several threads

these processors should be as low as possible).

The essential task the user has to solve when programming with OpenMP is to

care about variables and �elds that will be changed during parallel processing.

These variables need to be marked for the auto{parallelisation mechanism in such

a way that the compiler knows that it has to create local copies for each thread

while working in the parallel region.

3.7.4. ARPACK and OpenMP

For several reasons the MPI standard could not help us to parallelise the serial

program: First the ARPACK speci�c data distribution of the Lanczos vector x ,

second the fact that each processor needed it's own copy of the storage/lookup

table (Lin or Hash) which is a major memory problem and third resulting of the

data distribution the communication overhead for sending around the needed in-

formation.

For other models where extremely sparse matrices are used the P ARPACK/MPI

alternative is a good method to calculate eigenvectors and other data of interest.

E.g. in quantum chromodynamics this parallel package is used [53] to calculate

eigenmodes of the Wilson{Dirac matrix and the Hermitian Wilson{Dirac matrix.

In our case the dimers on the two{dimensional lattice lead to a more complex

matrix which doesn't seem to allow this technique to be applied without problems.

Knowing that the ARPACK subroutine is consuming only a small part of the

program (in terms of CPU time, i.e. for a 6 � 6 system we �nd for dsaupd()

50 seconds of CPU time and for the user supplied matrix{vector multiplication

32 Method

about 1400 seconds per iteration) we changed the serial programming approach

described in 3.6 in such a way that only that the ARPACK part is left running

serially and that the user supplied matrix{vector multiplication is parallelised auto-

matically by the compiler using the provided OpenMP directives.

This solves all the problems described above and has additional advantages in our

case:

As we use this approach on a shared memory architecture the Lanczos vector x

is available for all the processors the user has ordered. I.e. this information does

not need to be handed round with time consuming MPI communication calls.

Also �ltering out the needed parts and ignoring the unneeded parts of x is not

necessary (as described in section 3.7.2).

Especially the storage/lookup table needs to be kept in memory only once for all

the processors working on the problem which is | using the hashing technique

| the most memory consuming part of the program.

Third, the Lanczos vectors don't need to be distributed evenly on the processors,

instead the loop running over all spin con�gurations will be automatically distrib-

uted as even as prossible on the processors (i.e. a loop running from 0 to 9

distributed on 3 processors will result in one processor counting from 0 to 3 (= 4

iterations) and the both other processors each iterating 3 steps) which is also

important for an evenly distributed load average.

Fortunately the loop over all spin con�gurations calculates individual elements of

the subsequent Lanczos vector y , i.e. the iterations don't depend on each other

so that we don't have to care about data integrity.

#include <omp.h> /* Mandatory header file to be included */

/* Here some globally defined variables and arrays: */

long *transfeld,*b;

double *invfaktor;

int invcounter;

int *indexliste;

long i_lin;

/* With a compiler directive mark globally defined variables as

private for each thread ordered by the user (via the

environment variable OMP_NUM_THREADS), i.e. the compiler will

introduce internal copies for these variable for each thread

to keep them safe and avoid collisions when two thread at the same

time want to write on these variables. */

#pragma omp threadprivate(indexliste,i_lin,transfeld,b,invcounter,invfaktor)

init();

hash_create(); OR lin_create();

rcl() {

while (ok) {

dsaupd() /* serial ARPACK version, in contrast to the MPI versions */

checkpoint(); /* test whether to checkpoint and quit the program */

if (ok) {

/* Here the parallelised region will start with user supplied

matrix-vector multiplication taking the most time used by the

program. */

/* Globally defined arrays (see above) written to during the loop iterations

need to be allocated within a parallel region so each thread will have

it's own copy of the array. Additionally the local variable i is marked

to be a private copy for each thread. */

3.7 Parallel Programming Environments 33

#pragma omp parallel private(i)

{ /* this paranthesis needed as a whole region will be parallelised */

indexliste = (int *) calloc((size_t) tauschint, (size_t) sizeof(int));

transfeld = (long *) calloc((size_t) maxmult, (size_t) sizeof(long));

b = (long *) calloc((size_t) maxmult, (size_t) sizeof(long));

invfaktor = (double *) calloc((size_t) tauschint, (size_t) sizeof(double));

/* The following for-loop will be auto-parallelised with OpenMP */

/* The loop variable <statecount> will be marked private for

all threads automatically */

#pragma omp for

/* now the user has to provide the action of matrix A on vector x */

for all possible spin configurations in the reduced Hilbert space <statecount> do {

/* apply interactions with symmetries corresponding

to the model investigated */

model() {

newstate=exchangebits()

/* apply translational symm. and find representative in the

reduced Hilbert space */

findtransmin(newstate)

/* additionally apply spin inversion and find representative in the

reduced Hilbert space */

findtransmin(inversionmask^newstate)

}

for all interactions <i> defined in model

y[statecount]=coeff(i) * x[representative(i)]

} /* end of 'for' loop

/* clean up global arrays for which OpenMP instances have

been created before: */

free(indexliste);free(transfeld);free(b);free(invfaktor);

} /* end of parallel region */

} else {

/* ARPACK converged successfully; postprocessing to find eigenvalues */

dseupd()

}

}

}

output(); /* results to be written on disk */

Compared to the serial code presented in 3.6 the OpenMP code looks similar.

With several changes to the serial code the auto{parallelisation via OpenMP can

be implemented:

At the beginning of the program the mandatory C header inclusion line

#include <omp.h>

needs to be inserted so that OpenMP speci�c subroutines are available to the user

similar to the MPI interface, e.g. omp_get_num_threads() to �nd out within the

program how many processors have been allocated by the user setting the envir-

onment variable OMP_NUM_THREADS in his shell. omp_get_thread_num() usually

is used to �nd out the thread number (important for data or load distribution like

in MPI).

In our program we are working with a number of global variables. Such global

variables need to be marked by threadprivate() as they are going to be modi�ed

in an OpenMP parallel region (so that the program needs local instances within

the distinct threads to conserve data integrity).

34 Method

For the scalar variable invcounter nothing special needs to be considered later

in the parallel region.

Additionally several arrays like transfeld etc are de�ned. For such global arrays

one has to know that memory allocation via malloc() or calloc() needs to be

performed within the parallel region they will be modi�ed. The reason is that only

when allocating memory within the parallel region each distinct thread will have

it's own instance of the array to work on.

When allocating outside the parallel region the distinct threads each indeed would

see the allocated memory under private names but it would be the same memory

location being worked on uncontrolled und thus most surely leading to program

abortion or inconsistent data.

The threadprivate() instruction is used only for globally de�ned variables.

Local (also called stack) variables and arrays that are worked on by each thread

don't have to be marked with the threadprivate() statement but instead have

to be marked when starting the parallel region with

#pragma omp parallel private(var1,var2,field1,field2,...).

as shown in the code example.

Additionally, all variables and arrays de�ned in subroutines called from within

a parallel region are automatically de�ned as private (in our coding example

above this would be all variables de�ned e.g. in model(), exchangebits(),

findtransmin(), etc.). This is called orphaning in OpenMP terms.

Arrays and variables used read{only in parallel regions don't need to be marked

as private, instead they can be marked as shared (which is the default with Sun

Compilers so it's not necessarily needed but explicitely recommended to have

control over all variables used).

In the programming language C the #pragma omp parallel statement is acting

only on the directly following statement in the next line. In order to auto{parallise

a whole region, one needs to add additional curly brackets { ... } around the

region as shown in the code example.

Now having cared on all variables used we succeed and let the compiler auto{

parallelise the loop over all spin con�gurations with the very simple statement:

#pragma omp for

The reason why we have decided that especially the loop shown in the code ex-

ample should be parallelised is that for largest system size N = 6�6 = 36 the loop

iterates over 500 million steps which is a high enough number to be parallelised

even on a quite large number of processors (up to 32 processors in our case).

Second, in the called subroutines only scalar variables (no large private arrays) are

used so no diÆcult (and thus time consuming) memory management (in form of

array allocating/copying/deleting) needs to be performed by the system. Also,

this loop is located quite high{level in the program part consuming the most CPU

time so this is a good choice to parallelise with only a few OpenMP directives in

an e�ective way.

4. Numerical Results for the

Shastry{Sutherland Model

By applying the methods described in chapter 3 we have calculated the ground

state energies for a number of systems on two{dimensional lattices up to system

size N = 36 spins.

To verify that our program was calculating the correct energies we reproduced

data for systems with open boundary conditions calculated before by U. L�ow

and E. M�uller{Hartmann [12]. Their results represent strict lower bounds on

the critical value of the inverse frustration with x = J2=J1 as depicted before in

�g. 2.2. They show a 1=
p
N plot to �nd a rough estimate of xc ! 0:65 for the

lower bounds for systems of size N ! 1. In �g. 4.1 we present an overview of

the critical values of the inverse frustration where the system undergoes a phase

transition of �rst order.

Shastry−Sutherland model

0.5

0.5658

0.5840

0.5789

0.5910

0.5847

0.5914

N=28

N=20

N=4

N=12

N=17

N=24

N=31

Figure 4.1.: Critical values xc for the phase transition of the dimer phase to the

intermediate phase for J2 > 0 in lattices of the Shastry{Sutherland

model with open boundary conditions.

36 Numerical Results for the Shastry{Sutherland Model

Having crosschecked that the program yields correct results we calculated the

ground state energies for lattices up to N = 36 spins with periodic boundary

conditions. The smaller systems up to size N = 32 were calculated at the local

computing center of the University of Cologne (RRZK) on a Sun Fire15K with

72 UltraSPARC III Cu processors running with 900Mhz and 144GB amount of

physical main memory. When using the hashing technique for the lookup table for

the mapping of the states between the complete Hilbert space and the subsector

depending on the symmetries applied to the individual model we chose the prime

number in such a way that the maximum free memory of the shared memory

machine was allocated. Typically this was in the range of 50� 80GB fortunately

leading to a quite low collision number (at most 10 collisions to account for) in

the hash table which is an important condition for good performance numbers.

On this machine we used the serial code to calculate data for both, the Shastry{

Sutherland model and the plaquette model, up to system size N = 8 � 4 = 32

with periodic boundary conditions equivalent to a subsector of the Hilbert space

containing 37:582:307 states.

First we present a summary of the results obtained for the periodic systems of

the Shastry{Sutherland model shown in �g. 4.2 and next we discuss the speci�c

details for the di�erent systems.

N=18

N=16

N=8

N=24

0.56414

0.6665

0.6260

0.66609

N=32 0.66509

Shastry−Sutherland model

N=32 0.67753
extrap.

extrap.

extrap.
0.67501N=36

Figure 4.2.: Critical values for the crossover of the dimer phase to the non{

dimer phase in lattices of the Shastry{Sutherland model with periodic

boundary conditions.

In case of the N = 32 system we have two possible lattices as shown in �g. 4.2.

37

We �rst focus on the 8� 4 lattice which we partially have calculated on the Sun

Fire15K system described above and partially on the IBM p690 eServer Cluster

1600 supercomputer facility at the Forschungszentrum J�ulich. This computer

system contains 1312 processors on 41 individual nodes, each constisting of 32

Power 4+ processors running at 1:7GHz with 128GB of physical main memory of

which in the end 112GB are available for the user.

The 8 � 4 lattice is calculated using the following symmetries: conservation of

the total Sz magnetisation, spin inversion and translational invariance in both

directions leading to the size of 37:582:307 states in the subsector of the Hilbert

space that contains the ground state.

-0.39

-0.388

-0.386

-0.384

-0.382

-0.38

-0.378

-0.376

-0.374

0.66 0.665 0.67 0.675 0.68 0.685 0.69

E
_0

/n
J_

1

x=J_2/J_1

data points
-3/8

f(x)=-0.61661*x+0.03623 fitted to points in [0.67:0.69]
g(x)=-0.34538*x-0.14543 fitted to points in [0.665:0.667]

Figure 4.3.: Ground state energies per dimer obtained for a N = 8 � 4 Shastry{

Sutherland model with periodic boundary conditions. Although at �rst

sight the data points in the non{dimerised regime x > 0:67 seem to

lie on a straight line for large x this indeed is not the case as indicated

by the two linear �ts f (x) and g(x). The extrapolated value for the

crossover through the two data points next to it is xc � 0:66509.

A performance gain can be seen in table 4.1: Numbers have been calculated on

both, the Sun Fire15K serially and the IBM in parallel. We came down from

calculation times of nearly two weeks real time (also called wall clock time) to

one to two days. Focussing on the data point J2=J1 = 0:6554 and keeping in

mind that a single Power 4+ processor of the IBM machine is about a factor of

3 faster than a single UltraSPARC III Cu processor of the Sun system one would

expect a calculation time of 278h/3�93h serially. On the other hand the point is

much closer to the critical point xc which might lead to a doubling of the CPU

38 Numerical Results for the Shastry{Sutherland Model

J2=J1 E0=J1n wall clock time accum. CPU time

0.50000000 -3.7499999999989E-001 126h � 5.25d serial

0.66540000 -3.7510622099930E-001 35h 1105h

0.66666667 -3.755437096962E-001 278h � 11.5d serial

0.67000000 -3.769459588433E-001 19h 620h

0.67114094 -3.776395522653E-001 295h � 12.3d serial

Table 4.1.: Data points calculated for the N = 8� 4 Shastry{Sutherland model.

The dimension of the subsector of the Hilbert space containing the

ground state was 37:582:307

time: �180h serially which for 32 processors used in parallel would ideally mean

an expected calculation time of about 6h wall clock time. In contrast to this the

really used wall clock time was 35h.

This can be explained by a bad relation of the amount of serial code compared to

the amount of parallelised code in the program.

When checking the log�les we indeed �nd typical entries like this:

...

real time used for initialisation: 205 seconds

...

real time used for dsaupd(): 10 seconds

real time used for this lanczos step: 66 seconds

...

This means that compared to typical runtimes for a single job of 2h20m the (serial)

initialisation phase takes about 2.5% and each (serial) dsaupd() ARPACK call

takes �17%. So in fact only 80% of the code is in fact parallelised. From

Amdahl's law shown in �g. 3.1 we can see that only for very few processors (5-

10) the scaling behavior would be good so in this case we did in fact allocate too

many processors.

Using the UNICORE1 client which enables the user to organise all tasks concerning

the queueing system of the supercomputer facilities in J�ulich the user gets a bonus

of 30% of the used CPU time, i.e. in total for this speci�c system we were charged

only with 5.6% of the total available CPU time.

Extrapolation via a linear function through those two data points located next to

the critical point xc leads to an expected value of xc � 0:66469.

The other system investigated with N = 32 spins has a quadratic geometry (cf.

�g. 4.2). Compared to the N = 8�4 system discussed above we have less transla-

tional symmetry due to the quadratic character of the lattice. Using conservation

of the total Sz magnetisation, spin inversion and translational symmetry leads to

a subspace containing the ground state which is about twice as large as that of

the 8�4 system: 75:164:451 states. The graph shows the data points calculated
in �g. 4.4.

Data obtained for this system are listed in table 4.2. As the subspace is twice

as large as that of the stripe lattice the run times correspondingly grew higher

as can be read o� table 4.2. To our surprise for the data point x = 0:6778 the

1http://www.fz-juelich.de/unicore/

39

-0.377

-0.3765

-0.376

-0.3755

-0.375

0.676 0.677 0.678 0.679 0.68 0.681

E
_0

/n
J_

1

x=J_2/J_1

data points
f(x)=-0.45809*x-0.06476 fitted to points in [0.6775:0.6778]

-0.375
g(x)=-0.46322*x-0.06128 fitted to points in [0.6778:0.68]

Figure 4.4.: Ground state energies per dimer obtained for a square N = 32

Shastry{Sutherland model with periodic boundary conditions. The

extrapolated value through the two data points is xc � 0:67753.

J2=J1 E0=J1n wall clock time accum. CPU time

0.30000000 -3.75000000000000e-01 42h 1340h

0.67700000 -3.74999999998987e-01 provided by U. L�ow

0.67750000 -3.75115180019318e-01 provided by U. L�ow

0.67780000 -3.75252606784488e-01 17h 545h

0.68000000 -3.76271688712272e-01 68h 2184h

0.70000000 -3.86720856118170e-01 32.5h 1040h

Table 4.2.: Data points calculated for the square N = 32 Shastry{Sutherland

model. The dimension of the subspace containing the ground state is

75:164:451.

program needed only 17h wall clock time which is the lowest amount of CPU time

used by any of the points of this speci�c system, even the data point at x = 0:3

which for reliability purposes was calculated already needed 42h wall clock time.

Currently we don't have any explanation for this interesting behavior. A linear

�t to both data pairs, x1a = 0:6775; x2a = 0:6778 and x1b = 0:6778; x2b = 0:68

leads to the rounded critical inverse frustration xc � 0:67725. The data points

were calculated on the FZ J�ulich IBM supercomputer facilities. Two values were

kindly provided by U. L�ow. Accumulated for this lattice we used about 15% of

the total available CPU time quota.

The largest system investigated is the Shastry{Sutherland model consisting of

40 Numerical Results for the Shastry{Sutherland Model

N = 6� 6 = 36 spins placed on a square lattice as shown in �g. 4.2. This lattice

is expected to be quite interesting similar to the square N = 32 system. The

graph for the ground state energy behavior obtained so far is presented in �g. 4.5

and the individual data points are listed in table 4.3.

-0.5

-0.48

-0.46

-0.44

-0.42

-0.4

-0.38

-0.36

-0.34

0.65 0.7 0.75 0.8 0.85

E
_0

/n
J_

1

x=J_2/J_1

data points
-3/8

f(x)=-0.54369*x-0.008 fitted to points in [0.6:0.7]
g(x)=-0.631747*x+0.053698 fitted to points in [0.7:0.8]

h(x)=-0.651621*x+0.0696131 fitted to points in [0.8:0.85]

Figure 4.5.: Ground state energies per dimer obtained for a square N = 6�6 = 36

Shastry{Sutherland model with periodic boundary conditions. The

best estimate for the crossover is xc � 0:67501 via a linear �t through

the points at x = 0:68 and x = 0:7. The dimension of the subspace

containing the ground state is 504:174:594.

Not applying any symmetries at all would lead to a size of the Hilbert space of

236 = 6:87 � 1010 states. Using conservation of the total Sz magnetisation

would lead to a size of the corresponding subsector of
(
36
18

)
= 9:075:135:300

states. Spin inversion and a triple translational symmetry for each of both possible

orientations of the square lattice lead to a reduction of this still very large Hilbert

space by a factor of 1=18 which in the end results in 504:174:594 states to be

considered in the calculations performed which is about a factor of 15 larger than

the sectors investigated so far [54] to our knowledge and of about the size of the

8� 4 lattice studied above.

As a crosscheck for the program and the states �le with the representative states

of the subsector containing the ground state we �rst recalculated data that ori-

ginally had been calculated already in 1994 by Schulz et al. [7]. They studied the

frustrated Heisenberg antiferromagnet for which they also published the ground

state energy per site that we could reproduce up to the last digit in the special case

of vanishing frustration: (EHeisenberg
0 (S = 1=2; N = 36)=n = 0:678872 with n rep-

41

J2=J1 E0=J1n wall clock time accum. CPU time

0.50000000 -0.374999999999425 36h 1157h

0.66697792 -0.374999999995975 171h � 7d 5490h

0.68000000 -0.377704740424690 294h � 12d 9400h

0.70000000 -0.388578449404367 216h � 9d 6920h

0.80000000 -0.451753105004501 61h 1968h

0.85000000 -0.484334145942023 51h 1635h

Table 4.3.: Data points obtained for the N = 6 � 6 = 36 Shastry{Sutherland

model. The dimension of the subspace containing the ground state is

504:174:594.

resenting the number of sites). This fortunately (and to some extent surprisingly)

took only quite a short period of about 25h wall clock time on 32 processors which

gave us the hope that we would be able to calculate the ground state energies of

the 6� 6 Shastry{Sutherland model with its additional two{spin interactions also

within a reasonable time frame. Of course Schulz et al. could apply much more

symmetry properties to the Heisenberg model resulting in a subsector containing

'
only` 15:804:956 states. But keeping in mind that in 1994 1GB of physical main

memory did cost in fact 100:000 DM (� 51:000 Euro, the computer around the

memory not included) this number of states surely is very impressive.

Coming to the individual data points as usual we �rst calculated one point (x =

0:5) in the dimer phase for which we exactly know the ground state energy and

afterwards started quite conservatively with points at x = 0:85 and x = 0:8 leading

to a rather inaccurate estimate of the critical inverse frustration of xc � 0:68221.

On the other hand these points needed only a moderate amount of CPU time so

that this choice was suitable to get a �rst impression.

In order to calculate as few data points as possible to �nd a reasonable estimate for

the phase transition away from the dimer phase we investigated a corresponding

smaller periodic system (of size N = 4 � 4) to �nd out whether it is possible to

�nd a feasible function to �t at a few points far away from the transition point.

To verify whether we can �nd an anomaly in the behavior of the slope of the ground

state energy per dimer depending on the inverse frustration x we calculated ca.

1000 data points in the range [xc : 0:72] for a square N = 4 � 4 = 16 Shastry-

Sutherland model as depicted in �g. 4.6. At �rst sight at the upper graph one

would expect a simple linear behavior. But when choosing two data points, e.g.

x1 = 0:68 and x2 = 0:685, for a linear �t one �nds a di�erent behavior as shown

in the second and third graph.

Close to the transition point as well as far away from the transition point the

linear �t doesn't give satisfactory results. We also tried �t{functions of second

order f (x) = a � x2 + b � x � c and a power law f (x) = a � xb + c but without

success. In the end we arbitrarily chose the frustration values for the next data

point to calculate using the extrapolated xc estimates resulting out of the linear

�ts as upper bounds.

Coming back to the 6 � 6 lattice this means that we should calculate another

data point around x � 0:68221. To get a better linear �t next to the transition

point we indeed decided to calculate points at x = 0:68 and x = 0:7. Using these

42 Numerical Results for the Shastry{Sutherland Model

as a new basis for an estimate we currently �nd xc � 0:675 as a best estimate

for the critical value for the inverse frustration where the dimer phase is expected

to vanish.

Concerning the technical aspects with the N = 6 � 6 system we see that the

ratio between the serial and parallel parts of the program becomes much better

for several reasons leading to a much more eÆcient usage of the processors par-

ticipating. The size of the subsector considered is more than a magnitude larger

than that of the 8 � 4 or square N = 32 system described above leading alone

to a signi�cant increase of the parallel part of the program in which the matrix{

vector multiplication takes place. Second, the higher number of symmetries taken

advantage from also leads to a higher portion of the parallel sections because it

becomes more expensive to �nd the representative state belonging to the speci�c

subesector of the Hilbert space. And as a third point we should mention that also

the (serial) initialisation phase of the program takes more time as the checkpoint-

ing and states �les to be read in and the arrays to initialise of course are also a

magnitude larger than with the N = 32 systems. On the other hand we gratefully

were enabled to use job queues that allowed us to run jobs up to 24h wall clock

time (instead of 4h as before) which in the end leads to a further improvement

of the serial/parallel ratio.

Going from the smaller systems to the larger one we in the end �nd a ratio of the

serial to parallel parts of the program of less than 5% which allows an eÆcient

usage of the supercomputer facilities of the FZ J�ulich.

To summarise the results for the periodic systems we present a 1=
p
N3 plot in

�g. 4.7 which seems plausible, e.g. following Sandviks arguments [55] for two{

dimensional spin{1=2 systems based on chiral perturbation theory that are in

agreement with results obtained from renormalisation{group calculations for the

nonlinear � model [56, 57].

Connecting the values for the square periodic systems of size N = 16; 36 with

a straigth line we �nd a tendency xc(N ! 1) ! 0:6786 which seems quite

reasonable following the theoretical and experimental arguments elaborated on

in section 2.1. Taking also the square N = 32 system into account we �nd an

estimate for the critical frustration xc(N ! 1) ! 0:6808. On the other hand

the data points for the square systems N = 32; 36 are not located exactly on the

line. The value for the largest system considered is lower than that of the square

N = 32 system, so the estimate even becomes more inaccurate.

For the
'
stripe` type lattices of size N = 16; 24; 32 we �nd a lower value xc(N !

1) ! 0:6647 of which we think that it is not well suited to �nd an estimate

for the lattice of ini�te size since this family of lattices tends to become quasi

one{dimensional in the limit N !1.

Although these estimates should not be taken too seriously they nevertheless all

are reasonably lower than the the rigorous upper bound xcupper � 0:6955 for the

spin{1=2 case found by L�ow and M�uller{Hartmann [12].

43

-0.415

-0.41

-0.405

-0.4

-0.395

-0.39

-0.385

-0.38

-0.375

-0.37

0.66 0.67 0.68 0.69 0.7 0.71 0.72

E
_0

/n
J_

1

x=J_2/J_1

4x4 system, ground state energy per dimer, ~1000 data points

-0.376

-0.3758

-0.3756

-0.3754

-0.3752

-0.375

-0.3748

-0.3746

-0.3744

0.666 0.6665 0.667 0.6675 0.668

E
_0

/n
J_

1

x=J_2/J_1

4x4 system, ground state energy per dimer, ~1000 data points
f(x)=-0.65397*x+0.06096

-0.411

-0.41

-0.409

-0.408

-0.407

-0.406

-0.405

-0.404

-0.403

0.71 0.712 0.714 0.716 0.718 0.72

E
_0

/n
J_

1

x=J_2/J_1

4x4 system, ground state energy per dimer, ~1000 data points
f(x)=-0.65397*x+0.06096

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.66 0.67 0.68 0.69 0.7 0.71 0.72

d(
E

_0
/n

J_
1)

/d
x

x=J_2/J_1

4x4 system, slope

-0.8

-0.6

-0.4

-0.2

0

0.2

0.66 0.67 0.68 0.69 0.7 0.71 0.72

d^
2(

E
_0

/n
J_

1)
/d

x^
2

x=J_2/J_1

4x4 system, second derivation of the ground state energy per dimer, ~1000 data points

Figure 4.6.: First graph: Ground state energies per dimer obtained for a square

N = 4� 4 Shastry{Sutherland model with periodic boundary condi-

tions (ca. 1000 data points). Second graph: Zoom to the region

close to the transition point. Third graph: Zoom to the region far

from the transition point. Fourth graph: Slope of the ground state

energy depending on x = J2=J1. Fifth graph: 2nd derivative of the

ground state energy depending on the inverse frustration. No unusual

behavior of the slope or second derivative of the ground state energy

can be observed that might implicate a �rst order transition in the

regime xc < x < 0:72. From the slope and 2nd derivative one can

immediately see that a linear �t cannot give good estimates for the

critical frustration.

44 Numerical Results for the Shastry{Sutherland Model

0 0.005 0.01 0.015

1/N
3/2

0.66

0.665

0.67

0.675

0.68

0.685

x c

Figure 4.7.: Possible extrapolations of the critical inverse frustration of the in�n-

ite lattice considering values of �nite systems with periodic boundar-

ies and similar geometry. The solid line connects the systems with

the most pronounced two{dimensional character of size 16 and 36

(cf. �g. 4.2). The dashed line additionally takes the square system

of size 32 into account that has a slightly di�erent orientation. The

dotted line connects the
'
stripe` type systems N = 16; 24; 32. Of

course these lines represent only a tendency, they cannot be taken as

a serious extrapolation.

5. Numerical Results for the Plaquette

Model

Similar to the Shastry{Sutherland model for the plaquette model we searched for

lower bounds following P. W. Anderson's arguments [9] by calculating clusters

of di�erent system sizes with open boundary conditions. As we cannot apply

translational symmetry to these lattices the calculations for such systems need

more memory compared to the corresponding systems with periodic boundary

conditions.

Most of the smaller systems have been calculated with the serial program version

at the computing center of the RWTH Aachen on a Sun Fire 15K computer

system rather similar to that of the University of Cologne technically already

described in chapter 4.

We calculated the ground state energies for systems with open boundary condi-

tions up to system size N = 28 as presented in �gure 5.1.

0.5

0.53453

0.53405

0.52519

0.53458

Plaquette model

0.53782

N=4

N=12

N=17

N=20

N=24

N=28

Figure 5.1.: Critical values xc for the phase transition of the dimer phase to an

intermediate phase for J2 > 0 in lattices of the plaquette model with

open boundary conditions.

Up to the size N = 24 we could calculate the lowest eigenvalues to arbitrary

46 Numerical Results for the Plaquette Model

precision applying conservation of the total Sz magnetisation and spin inversion

(for systems with an even number of sites) so that these results indeed are exact

to the fourth digit.

For the open N = 28 system we have calculated the data points shown in �g 5.2,

also applying the same symmetries as for the N = 24 lattice. This leads to a size

of the subsector of the Hilbert space containing the ground state of 40:116:600

states.

-0.51

-0.508

-0.506

-0.504

-0.502

-0.5

-0.498

0.532 0.534 0.536 0.538 0.54 0.542 0.544 0.546 0.548 0.55

E
_0

/n
J_

1

J_2/J_1

data points
-1/2

f(x)=-0.7573*x-0.09271 fitted at [0.54:0.545]

Figure 5.2.: Ground state energies per plaquette for an open N = 28 system with

a geometry as shown in �g. 5.1. With a linear �t we extrapolate a

critical value xc � 0:53782 where the dimer phase vanishes.

Presenting all data collected for the lattices with open boundaries in a 1=
p
N plot

with system size N we �nd the scenario as depicted in �g. 5.3.

The lines connect the results for several possible series of lattices with a related

geometry. The values for x(N ! 1) where the lines meet the ordinate are

x(N = 17; 24) � 0:531 which we think is an unusual behavior as the value for

the N = 24 lattice also is unexpectedly low as already mentioned above. For this

case the N = 31 lattice (cf. �g. 4.1) would be of interest as it is the continuation

for this family of models. xc(N ! 1) ! 0:563 is a value for systems that for

large system sizes develop a more or less one{dimensional structure. Nevertheless

the values calculated for these systems are strict lower bounds for the critical

frustration.

The third value obtained for the square systems of size 12 and 24 xc(N !1)!
0:555 could be a reasonable estimate for the in�nity lattice as it results from

systems with the most pronounced two{dimensional character.

47

0 0.1 0.2 0.3 0.4 0.5

1/N
1/2

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

x c

Figure 5.3.: Possible extrapolations of the critical inverse frustration of the in�nite

lattice considering values of �nite systems with open boundaries and

similar geometry. The solid line connects the systems of size 12, 20

and 28 (cf. �g. 5.1). The dotted line connect the systems of size 17

and 24. And the dashed line connects the systems of size 12 and 24.

Of course these lines represent only rough tendencies, they cannot

be taken as serious extrapolations.

We then calculated the ground state energies of the plaquette model for systems

with periodic boundary conditions up to system size N = 8 � 4 = 32. The

systems with 24 and less sites are estimated exactly to arbitrary precision as at

most 2:704:156 states needed to be taken into account.

The largest system studied for this model is a lattice with 8 � 4 sites. Using

conservation of the total Sz magnetisation, spin inversion and translational in-

variance like in the case of the identically structured Shastry{Sutherland model

we extrapolate the critical inverse frustration xc = 0:57237.

For the square N = 32 lattice with periodic b. c. we currently �nd xc > 0:58 as

a �rst estimate.

Presenting all data collected for the lattices with periodic boundaries in a 1=
p
N3

plot we �nd the scenario as depicted in �g. 5.5.

Connecting the values of the systems N = 16; 24; 32 with a line we �nd a tend-

ency xc(N ! 1) ! 0:5795. As these systems develop a quasi one{dimensional

character towards larger system sizes we don't believe that this is a reasonable

value for the two{dimensional lattice of in�nite size. On the other hand we �nd

the square N = 32 lattice for x = 0:58 (empty square symbol in �g. 5.5) still

in the dimer phase. Taking this value as a lower bound for the critical inverse

frustration and also taking the square lattice with system size 18 into consider-

48 Numerical Results for the Plaquette Model

Plaquette model

0.56198

0.57179

0.55555

0.5

0.57237

N=18

N=16

N=8

N=24

N=32

N=32

extrap.

> 0.58

Figure 5.4.: Critical values xc for the phase transition of the dimer phase to the

intermediate phase for J2 > 0 for the plaquette model on lattices

with periodic boundary conditions.

ation we �nd a tendency xc(N ! 1) ! 0:5978 which in our opinion might be

the most reasonable lowest value for the critical inverse frustration. Addition-

ally taking the smallest system of this series with size 8 into account we �nd

xc(N !1)! 0:5868. But we think that this speci�c system is too small to be

taken into consideration.

All these estimates are lying below the upper bound calculated by J. Zittartz [36].

Using a variational approach he �nds the algebraic value xcupper =
31
48 � 0:64583

as a strict upper bound for the frustration where the dimer phase of the plaquette

model vanishes.

49

0 0.01 0.02 0.03 0.04 0.05

1/N
3/2

0.5

0.52

0.54

0.56

0.58

0.6

x c

Figure 5.5.: Possible extrapolations of the critical inverse frustration of the in�nite

lattice considering values of �nite systems with periodic boundaries

and similar geometry. The estimate for the square N = 32 lattice is

marked with an empty square. The dashed line connects the stripe

systems of size N = 16; 24; 32 (cf. �g. 5.4). The dotted line could

be a lower estimate for the systems with the most pronounced two{

dimensional character of size N = 8; 18; 32. The solid line connects

the square N = 32 system and the N = 18 system. Of course these

lines represent only a rough tendency, they cannot be taken as a

serious extrapolation.

6. Summary and Outlook

The present thesis deals with the ground state properties of two{dimensional

antiferromagnetic quantum spin models.

On the one hand the Shastry{Sutherland model with nearest neighbor interactions

and an additional frustrating two{spin interaction between next{nearest neighbors

is considered (Shastry and Sutherland, 1981). It is of special interest as it is one of

the few models featuring an exactly known ground state, the dimer singlet state.

The model shows a rich zero temperature phase diagram both in the classical and

in the quantum mechanical case.

In this work we focus on the quantum mechanical case where the phase diagram

on the antiferromagnetic side shows a dimer phase with an adjacent intermediate

phase of a nature which is still discussed. As a function of the frustration at

a certain critical point that still is not determined exactly the phase transition

between the dimer phase and the intermediate phase occurs.

The Shastry{Sutherland model describes the magnetic properties of the orthob-

orate substance SrCu2(BO3)2 which has been synthesised in 1991 by Smith and

Keszler.

SrCu2(BO3)2 is a layered compund of Cu(BO3) planed separated by the Sr

atoms. In 1999 Miyahara and Ueda mapped this structure on the two{dimensional

Shastry{Sutherland model which allows us to present a detailed overview of ex-

perimental and theoretical results.

Another two{dimensional frustrated antiferromagnetic model is studied that has

been suggested by J. Zittartz. It shows a number of similarities to the Shastry{

Sutherland model. It has nearest neighbor interactions and next-nearest two{

spin interactions, but it also features additional four{spin interactions why it is

called plaquette model. Similar four{spin interactions are currently discussed in

other magnetic systems like the spin{ladder with cyclic exchange or the parent

compounds of high{Tc superconductors. The model investigated in this work is

also constructed in such a way that it shows an exactly known ground state in

the dimer phase and similar to the Shastry{Sutherland model a transition to an

intermediate phase is expected where the transition point is not clearly determined

either.

To study the ground state energy of the models we follow two approaches. On the

one hand we concentrate on �nite lattices with periodic boundary conditions and

on the the other hand we use a variational ansatz proposed by P. W. Anderson by

decomposing the Hamilton operator into clusters of �nite size covering the lattice

without overlapping bonds. Taking the ground state of the Hamilton operator as

a variational state for the �nite cluster (with open boundary conditions) it follows

that the ground state of the �nite cluster is always smaller than or equal to the

ground state of the original Hamiltonian. Thus, we �nd the ground state energy

of the �nite cluster as a strict lower bound.

52 Summary and Outlook

Since we are interested only in the lowest lying eigenvalues we can use the Lanczos

method which we explain in detail. We apply di�erent symmetry operators com-

muting with the Hamilton operators leading to subsectors smaller than the ori-

ginal Hilbert space. As we encounter still very large subsectors with up to 500

million representative states we use the numerical library ARPACK which provides

a special parallel programming frontend for the Lanczos method based on the

parallel programming standard MPI (message passing interface) which we give

a short introduction to. Unfortunately we come to the conclusion that due to

several technical reasons the MPI standard doesn't �t our needs: The data dis-

tribution implemented by the ARPACK library is such that with our models with

next{nearest neighbor spin interactions a high amount of communication over all

processors is created. A second reason is that MPI is designed for a distributed

architecture which means that certain arrays with e.g. read{only information,

like the storage/lookup table for the representative states belonging to the sub-

sector of the Hamilton operator studied, have to be kept in memory separately

for each processor. As the size of the subspace is the limiting factor of the calcu-

lations concerning the memory usage of course this is a major drawback for our

investigations.

An alternative resolving these problems is a second parallel programming technique

called OpenMP which (still in the process of being developed) is implemented in

the compiler, in contrast to the MPI library which is compiler independent and

where the user has to program the data management and communication himself.

By so called OpenMP compiler directives the user adds to his serial program,

certain regions in the program are marked for the computer system to work on in

parallel. Also the user can mark global variables in such a way that the compiler

keeps a local copy for each processor allocated. This is necessary as in principle

all processors share the same memory which immediately solves our problem with

the array keeping the storage/lookup table of the representative states mentioned

above because all processors can access this single copy in contrast to the MPI

version.

Combining the well known methods like application of symmetry operators, Lanczos

method, Lin{algorithm and hashing technique to create the storage/lookup table

mentioned above with the parallel programming technique OpenMP we calculate

ground state energies for both, lattices with open boundary conditions and up to

28 sites with 40:116:600 representative states in the subsector as well as for the

lattices with periodic boundary conditions and up to 36 sites with 504:174:594

representative states.

For the Shastry{Sutherland model L�ow and M�uller{Hartmann �nd a best strict

lower bound xc = 0:5914 for the inverse frustration where the phase transition

between the dimer phase and the intermediate phase might occur at lowest. For

the periodic systems with 32-36 sites we have calculated individual data points

from which we have extrapolated the critical values for the inverse frustration xc .

Smaller systems have been calculated exactly up to the fourth digit. We �nd that

the results strongly depend on the individual geometry of the lattices considered so

we collect corresponding lattices to perform a 1=
p
N3 extrapolation, e.g. following

Sandviks arguments based on a chiral perturbation theory that are in agreement

53

with results obtained from renormalisation{group calculations for the nonlinear �

model to possibly �nd an estimate of the critical value of the inverse frustration

for the in�nite system.

Unfortunately the values do not follow a simple law so we cannot perform such an

estimate. Nevertheless we can state that the results of the periodic systems show

an increasing tendency in general. For the square lattice with 32 sites we �nd

an extrapolated value xc = 0:6775 and for the 6� 6 lattice an also extrapolated

value xc = 0:6750.

We discuss the literature concerning the nature of the intermediate phase. From

the theoretical point of view many di�erent estimates for the critical frustration

where the dimer phase vanishes were presented using various methods. With

some of these estimates our results are in agreement. For instance, using exact

diagonalisation and fourth order perturbation theory Miyahara and Ueda �nd a

direct dimer to N�eel transition at x � 0:7. Weihong, Hamer and Oitmaa �nd

x = 0:691 as an upper bound of the dimer phase investigating the behavior of

the gap above the singlet dimer ground state to name a few. On the other

hand a number of investigations show a di�erent scenario. Using the perturbative

continuous unitary transformation method Knetter et al. �nd x = 0:63 as a value

of the breakdown of the dimer phase. This value is in clear contradiction with our

results. Also Albrecht and Mila �nd a �rst order transition of the dimer phase to

an intermediate phase at x � 0:606 as an uncontrolled estimate which is much

smaller than the results presented in this thesis.

From the experimental point of view SrCu2(BO3)2 has been investigated by a

number of di�erent methods. The existence of the singlet ground state has been

con�rmed by Kageyama et al. in 1999 measuring the magnetic response and

the magnetic susceptibility. They conclude that SrCu2(BO3)2 is a realisation

of the Shastry{Sutherland model. Experiments with inelastic neutron scatter-

ing, electron resonance spectroscopy, far infrared spectroscopy, nuclear magnetic

resonance or Raman experiments all con�rm the existance of a gap � � 34K.

The range of given values x for the inverse frustration is quite close to the value

xc � 0:69 but a direct observation of real substance at or close to the quantum

critical point has not been accomplished so far.

Turning to the plaquette model proposed by J. Zittartz we present the results for

lattices with open boundary conditions up to system size N = 28 equivalent to

40:116:600 representative states in the subsector of the Hilbert space containing

the ground state. As a best strict lower bound for the inverse frustration where the

plaquette model undergoes a phase transition from the dimer phase to the adjacent

phase we �nd an extrapolated value xc = 0:5378. We observe an untypical

behavior of the square N = 24 system which yields xc = 0:5340 which is a lower

value than we �nd already at smaller system sizes. In all other cases we �nd that

at least within the same family of lattices of a similar geometry the critical values

for the inverse frustration are increasing. For the lattice N = 24 we �nd a lowering

when comparing to the N = 17 case where we �nd a value of xc = 0:5345 already.

Correspondingly to the Shastry{Sutherland model we show a 1=
p
N plot for the

systems with open boundaries. Three series of lattices can be identi�ed of which

two in the limit N !1 become quasi one{dimensional. The series with lattices of

54 Summary and Outlook

a square character consisting of the lattices of size N = 12; 24 gives an estimate

xc(N !1)! 0:563.

The lattices with periodic boundary conditions have been calculated up to systems

of size N = 32. The N = 8�4 system considered yields an extrapolated value for

the inverse frustration xc = 0:5723. For the square version of the N = 32 system

we �nd a �rst estimate xc > 0:58.

For the plaquette lattices with periodic bounday conditions the 1=
p
N3 plot presents

two possible series of related lattices. One family that for N !1 becomes quasi

one{dimensional and the other one consisting of lattices with a square charac-

ter. The latter series gives a rough estimate xc(N ! 1) ! 0:5868 for the

critical inverse frustation where the dimer phase might vanish. Neglecting the

smallest lattice consisting of 8 sites only, we �nd a most reasonable value of

xc(N !1)! 0:5978.

All estimates are lying below the algebraic upper bound xcupper = 31
48 � 0:646

calculated by Zittartz considering variational arguments.

In general we observe that for the plaquette model the lower bounds predicted by

analysing square lattices with open boundary conditions are not as close to the dir-

ect approximations via systems with periodic boundary conditions (xcopen ! 0:555,

xcperiodic ! 0:5978) than the corresponding values for the Shastry{Sutherland

model (xcopen ! 0:65 estimated by L�ow and M�uller{Hartmann, xcperiodic ! 0:6786).

6.1. Outlook

From a technical point of view calculations for quantum spin models like the two

frustrated two{dimensional models considered in this thesis are a very challenging

task, both in terms of memory and CPU time usage. To our experience enlarging

a lattice by only four spins leads to an increase of CPU time and memory usage by

a whole order of magnitude. For that reason the method of exact diagonalisation

is directly coupled to the technical development of modern computer systems and

parallelisation techniques. Although we were able to calculate the ground states of

systems containing up to 500 million states in the corresponding subsector of the

Hilbert space we did not calculate the �rst excitations due to the high amount of

CPU time used already for the ground states. In fact we overall have used about

40000h CPU time on the IBM supercomputer at the Forschungszentrum J�ulich

compared to which the CPU hours consumed on the SunFire 15K systems of the

Universities in Aachen and K�oln can be neglected.

Also calculating other observables like the staggered magnetisation was not pos-

sible because for such quantities all Lanczos vectors need to be kept in memory

which is impossible as a single Lanczos vector for the N = 36 system already alloc-

ates about 4GB main memory. Also saving this data on disk as a slow workaround

in this case is not feasible.

For that reason we think that calculating at least the ground state energies already

is a good achievment.

We hope that our expertise will �nd further application in the future.

A. Sample Implementations in C

A.1. Hashing Technique

void hash_create(void) {

long i,rest;

int max=0;

/* This subroutine is called once during initialisiation phase of the program */

/* globally defined two-dimensional array 'hash_table' of size 'PRIME' */

hash_table = (int **) calloc((size_t) PRIME, (size_t) sizeof(int *));

/* number of collisions for each possible remainder */

hash_length = (int *) calloc((size_t) PRIME, (size_t) sizeof(int));

if (NULL == hash_length) exit(13);

/* first: find out the number of collisions corresponding to a given remainder */

/* 'n' is the number of states 'sz0_states' in the subspace investigated */

for (i=0;i<n;i++) {

hash_length[sz0_states[i] % PRIME]++;

/* 'max' is the maximum number of collisions */

/* 'max' should be as low as possible, preferably 'max=1', but

for this one needs to choose a large prime number 'PRIME' */

if (hash_length[sz0_states[i] % PRIME] > max) max=hash_length[sz0_states[i] % PRIME];

}

/* second: allocate the needed memory individually for each remainder */

for (i=0L;i<PRIME;i++) {

#ifdef _AIX

if (0 != hash_length[i])

#endif /* _AIX */

/* hash_table is not an equally distributed array:

hash_table[0]: ---

hash_table[1]: -

...

hash_table[PRIME]: --

*/

hash_table[i]=(int *) calloc((size_t) hash_length[i], (size_t) sizeof(int));

#ifndef _AIX

if (NULL == hash_table[i]) {

exit(3);

}

#endif /* _AIX */

hash_length[i]=0;

}

/* third: finally fill in the representatives corresponding to their remainder */

for (i=0;i<n;i++) {

rest = sz0_states[i] % PRIME;

hash_table[rest][hash_length[rest]] = i;

hash_length[rest]++;

}

/* clean up unneeded memory for later usage */

56 Sample Implementations in C

free(hash_length);

}

/* This subroutine returns the place of a representative state in the

original Hilbert space */

int return_hash(long val) {

long k;

int i=0;

k=val%PRIME;

while (sz0_states[hash_table[k][i]] != val) i++;

return hash_table[k][i];

}

A.2. Lin-Algorithm

#define GETBIT(VEKTOR,POSITION) (((VEKTOR) >> (POSITION)) & 1L)

/* This subroutine is called once during the initialisation phase of the program */

void lin_create(void) {

/* a: left half; b: right half; */

int a,b,ma,mb,counta,countb,bitsupa,bitsupb,i,j,k,l;

long count;

#ifdef INVERSION

invmask=(1L<<(N/2))-1;

#endif

count=0L;

countb=0;

for (mb=0;mb<=N/2;mb++) {

ma=N/2-mb+odd;

a=(1<<ma)-1; /* first number with magnet. ma */

b=(1<<mb)-1; /* first number with magnet. mb */

for (i=b;i<1<<(N/2);i++) {

bitsupb=0;

for (j=0;j<N/2;j++)

if (GETBIT(i,j) == 1) bitsupb++;

if (bitsupb == mb) {

countb=(int) count;

Ib[i]=countb;

counta=0;

for (k=a;k<1<<(N/2+odd);k++) {

bitsupa=0;

for (l=0;l<N/2+odd;l++)

if (GETBIT(k,l) == 1) bitsupa++;

if (bitsupa == ma) {

#ifdef INVERSION

if ((invmask^k) > k) { /* xor */

#endif

Ia[k] = counta;

/* count=counta+countb, bzw. count=Ia[k]+Ib[i] */

sz0_states[count]=(((long) k)<<(N/2))+(long) i;

counta++;

count++;

#ifdef INVERSION

} /* if invmask^k */

#endif

} /* if bitsupa */

} /* for k=a */

} /* if bitsupb */

} /* for i=b */

} /* for mb=0 */

} /* lin_create() */

A.3 Calling Fortran Subroutines from a C/C++ Program 57

/* This subroutine is called to give back the position of the representative

in the original Hilbert space */

int lin(long val) {

return Ia[(int) (val>>(N/2))]+Ib[(int) (val&((1<<(N/2))-1))];

}

A.3. Calling Fortran Subroutines from a C/C++

Program

In this section we want to demonstrate how to simply call a typical standard nu-

merical eigenvalue/eigenvector subroutine, e.g. of the BLAS/LAPACK1 libraries,

since we have recognised that many people at the beginning of their studies and

calculations have experienced problems implementing code (usually in the pro-

gramming language C or C++) to solve this task. A common diÆculty is to call

a subroutine which usually is programmed in Fortran from the user's C or C++

program leading to various more or less dubious types of programming solutions.

The reason is that Fortran and C use di�erent methods how subroutine calls are

handled.

The solution is that the user programming in C or C++ has to pass all arguments

by reference independent of their type, not only arrays but also scalars like integer

or oating point variables. Even scalar input{only variables need to be passed by

reference as illustrated in the following C code fragment which returns the largest

element of the two arrays
'
a`, and

'
b`containing numbers of type float2:

/* 1. Declare scratch variable 'one' to allow the constant 1 to be

passed by value */

int one=1, n=10, large_index;

float *a, *b, largest;

/* 2. Append underscore to conform to FORTRAN naming system */

/* 3. Pass all arguments, even scalar input-only, by reference

to the BLAS subroutine 'isamax' */

/* 4. Subtract one to convert from FORTRAN array indexing conventions */

large_index = isamax_ (&n, a, &one) - 1;

largest = a[large_index];

large_index = isamax_ (&n, b, &one) - 1;

if (b[large_index] > largest)

largest = b[large_index];

1http://www.netlib.org/
2Adapted from an example in Sun Studio 9: Sun Performance Library User's Guide, available

from the internet address http://docs.sun.com/.

Bibliography

[1] W. Heisenberg, Z. Phys. 49, 613 (1928).

[2] H. Bethe, Z. Phys. 71, 205 (1931).

[3] L. Hulth�en, Arkiv, Mat. Astron. Fys. 26A, No. 11 (1938).

[4] J. Bonner and M. Fisher, Phys. Rev. 135, A640 (1964).

[5] J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).

[6] A. Ralston, A �rst course in numerical analysis, McGraw-Hill, New York,

NY, 1965.

[7] H. J. Schulz, T. A. L. Ziman, and D. Poilblanc, J. Phys. I 6, 675 (1996).

[8] S. Miyahara and K. Ueda, Phys. Rev. Lett. 82, 3701 (1999).

[9] P. W. Anderson, Phys. Rev. 83, 1260 (1951).

[10] B. S. Shastry and B. Sutherland, Physica B 108, 1069 (1981).

[11] C. K. Majumdar, J. Phys. C 3, 911 (1969).

[12] U. L�ow and E. M�uller-Hartmann, J. Low Temp. Phys. 126, 1135 (2002),

ibid. 127, 290 (2002).

[13] M. Albrecht and F. Mila, Europhys. Lett. 34, 145 (1996).

[14] C. H. Chung, J. B. Marston, and S. Sachdev, Phys. Rev. B 64, 134407

(2001).

[15] D. Carpentier and L. Balents, Phys. Rev. B 65, 024427 (2002).

[16] A. L�auchli, S. Wessel, and M. Sigrist, Phys. Rev. B 66, 014401 (2002).

[17] T. Munehisa and Y. Munehisa, J. Phys. Soc. Jpn. 72, 160 (2003).

[18] A. Koga and N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000).

[19] Z. Weihong, C. Hamer, and J. Oitmaa, Phys. Rev. B 60, 6608 (1999).

[20] Z. Weihong, J. Oitmaa, and C. Hamer, Phys. Rev. B 65, 014408 (2002).

[21] C. Knetter, Perturbative Continuous Unitary Transformations: Spectral

Properties of Low Dimensional Spin Systems, PhD thesis, Universit�at zu

K�oln, 2003.

60 Bibliography

[22] C. Knetter, A. B�uhler, E. M�uller-Hartmann, and G. S. Uhrig, Phys. Rev.

Lett. 85, 3958 (2000).

[23] R. W. Smith and D. A. Keszler, J. Solid State Chem. 93, 430 (1991).

[24] A. B�uhler, High Temperature Series Expansions for Spin- and Spin-Phonon-

Systems, PhD thesis, Universit�at zu K�oln, 2003.

[25] K. Sparta et al., Eur. Phys. J. B 19, 507 (2001).

[26] S. Miyahara and K. Ueda, Supplement B to J. Phys. Soc. Jpn. 69, 72 (2000).

[27] H. Kageyama et al., Phys. Rev. Lett. 82, 3168 (1999).

[28] H. Kageyama et al., Phys. Rev. Lett. 84, 5876 (2000).

[29] H. Nojiri, H. Kageyama, K. Onizuka, Y. Ueda, and M. Motokawa, J. Phys.

Soc. Jpn. 68, 2906 (1999).

[30] T. R~o~om et al., Phys. Rev. B 61, 14342 (2000).

[31] K. Kodama et al., J. Phys.: Condens. Matter 14, L319 (2002).

[32] P. Lemmens et al., Phys. Rev. Lett. 85, 2605 (2000).

[33] H. Nojiri et al., Physica B 294-295, 14 (2001).

[34] C. Knetter, E. M�uller-Hartmann, and G. S. Uhrig, J. Phys.: Condens. Matter

12, 9069 (2000).

[35] S. Miyahara and K. Ueda, J. Phys.: Condens. Matter 15, R327 (2003).

[36] J. Zittartz, private communication.

[37] E. Dagotto and T. M. Rice, Science 271, 618 (1996).

[38] A. Reischl and E. M�uller-Hartmann, Eur. Phys. J. B 28, 173 (2002).

[39] S. Brehmer, H.-J. Mikeska, M. M�uller, N. Nagaosa, and S. Uchida, Phys.

Rev. B 60, 329 (1999).

[40] T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292 (2001).

[41] L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B 65, 224412

(2002).

[42] G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, Phys. Rev. Lett.

81, 1098 (1998).

[43] K. Voelker and S. Chakravarty, Phys. Rev. B 64, 235125 (2001).

[44] C. Lanczos, C. Res. Natl. Bur. Stand. 45, 255 (1950).

[45] H. Q. Lin, Phys. Rev. B 42, 6561 (1990).

Bibliography 61

[46] J. M. Thijssen, Computational Physics, Cambridge University Press, Cam-

bridge, 1999.

[47] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solu-

tion of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi

Methods, SIAM, Philadelphia, 1998.

[48] I. M. Barbour, N.-E. Behilil, P. E. Gibbs, G. Schierholz, and M. Teper, The

Lanczos Method in Lattice Gauge Theories, in: The Recursion Method and

Its Applications, edited by D. G. Pettifor and D. L. Weaire, Springer Series

in Solid-State Sciences Vol. 58, Springer, Berlin, 1985.

[49] D. C. Sorensen, Implicitly Restarted Arnoldi/Lanczos Methods for

Large Scale Eigenvalue Calculations, NASA CR-198342 ICASE Re-

port No. 96-40, 1996, http://www.icase.edu/library/reports/rdp/96/96-

40RDP.tex.refer.html.

[50] D. Knuth, The Art of Computer Programming, Addison-Wesley, Reading,

1973, Vol. 3, Sec. 6.4.

[51] Y. Aoyama and J. Nakano, RS/6000 SP: Practical MPI Programming, IBM

redbook, available from http://www.redbooks.ibm.com/, 1999.

[52] C. Schmitz and P. Br�uhne, Slides of the RRZK course
'
Paralleles Pro-

grammieren auf den Compute Servern des ZAIK/RRZK`, available from the

RRZK webpages http://www.uni-koeln.de/rrzk/kurse/unterlagen/parallel/,

2003.

[53] H. Ne�, Low fermionic eigenmode dominance in QCD on the lattice, PhD

thesis, Bergische Universit�at{Gesamthochschule Wuppertal, 2001.

[54] C. J. Hamer, T. H�ovelborn, and M. Bachhuber, J. Phys. A 32, 51 (1999).

[55] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).

[56] H. Neuberger and T. Ziman, Phys. Rev. B 39, 2608 (1989).

[57] D. S. Fisher, Phys. Rev. B 39, 11783 (1989).

English Abstract

In this thesis ground state properties of two{dimensional antiferromagnetic quan-

tum{spin systems are investigated. Especially, we study the spin{1=2 Shastry{

Sutherland model consisting of a Heisenberg model with additional two{spin in-

teractions, and a spin{1=2 plaquette model proposed by J. Zittartz with two{spin

interactions and additional four{spin interactions. These models are of special

interest as they feature an exactly known ground state in the dimer phase. The

Shastry{Sutherland model has a realisation in the compound SrCu2(BO3)2 . The

phase boundary of the dimer phase could not yet been determined exactly al-

though various theoretical approaches have been used. By means of a variatonal

ansatz suggested by P. W. Anderson in connection with exact diagonalisation via

the Lanczos method and additional application of parallel programming techniques

(OpenMP) we calculate ground state energies of lattices with open boundary con-

ditions up to 31 sites that give a strict lower bound of the ground state energy of

the in�nite system.

Also lattices consisting of up to 36 sites with periodic boundary conditions are

considered whose ground state energies directly approximate that of the in�nite

system.

During the calculations subsectors of the Hilbert space up to a size of 500 mil-

lion states have been examined which to our knowledge extend the subspaces

investigated so far by more than an order of magnitude.

We �nd that the ground state energies strongly depend on the speci�c geometry

of the individual lattice studied. We try to extrapolate the ground state energies

of systems with similar geometry to an in�nite lattice. Unfortunately the lattices

considered still seem to be too small to give a clear determination of the critical

inverse frustration where the dimer phase of the two models vanishes.

Deutsche Kurzzusammenfassung

In der vorliegenden Arbeit werden Grundzustandseigenschaften zweidimensionaler

antiferromagnetischer Quantenspinsysteme untersucht. Wir betrachten insbeson-

dere das Spin{1=2 Shastry{Sutherland Modell, das aus einem Heisenbergmodell

mit zus�atzlichen Zweispinwechselwirkungen besteht, und ein von J. Zittartz vor-

geschlagenes Spin{1=2 Plakettenmodell, ebenfalls mit Zweispinwechselwirkungen

und mit zus�atzlichen Vierspinwechselwirkungen auf Plaketten.

Diese Modelle sind von besonderem Interesse, da sie sich durch einen exakt be-

kannten Grundzustand in der dimerisierten Phase auszeichnen. Das Shastry{

Sutherland Modell ist in der Substanz SrCu2(BO3)2 realisiert. Die Phasengren-

ze der dimerisierten Phase konnte trotz Anwendung verschiedener theoretischer

Ans�atze bis heute nicht exakt bestimmt werden. Wir k�onnen mit Hilfe eines von

P. W. Anderson vorgeschlagenen Variationsansatzes in Verbindung mit exakter

Diagonalisierung durch das Lanczos Verfahren und zus�atzlicher Anwendung von

Parallelisierungstechniken (OpenMP) Grundzust�ande o�ener Gitter bis 31 Gitter-

pl�atze berechnen, die eine strikte untere Schranke des Grundzustands des unend-

lich gro�en Systems bilden.

Desweiteren werden Gitter mit bis zu 36 Gitterpl�atzen mit periodischen Randbe-

dingungen betrachtet, deren Grundzust�ande den des unendlich gro�en Systems

direkt ann�ahern.

Dabei werden Untersektoren des Hilbertraums mit bis zu 500 Millionen Zust�anden

betrachtet, was einer Erweiterung der uns bekannten bisher betrachteten R�aume

um mehr als eine Gr�o�enordnung darstellt.

Die Gundzustandsenergien h�angen stark von der Geometrie der jeweiligen betrach-

teten Gitter ab. Es wird versucht, die Grundzustandsenergien von Systemen mit

�ahnlicher Geometrie mit Hilfe linearer Fits auf ein unendlich gro�es System zu

extrapolieren. Leider scheinen die untersuchten Gitter noch zu klein zu sein, um

eine eindeutige Aussage �uber die genaue kritische inverse Frustration machen zu

k�onnen, bei der die dimerisierte Phase der beiden Modelle jeweils verschwindet.

Danksagung

� Mein besonderer Dank geht an Frau Priv.{Doz. Ute L�ow f�ur die Ausgabe

und Betreuung dieser Arbeit. Sie stand jederzeit f�ur Diskussionen und Hil-

festellungen zur Verf�ugung und trug durch ihre Unterst�utzung und Geduld

wesentlich zum Gelingen dieser Arbeit bei.

� Ein Dank auch an Prof. Dr. E. M�uller{Hartmann und Prof. Dr. J. Zittartz

f�ur ihre stete Bereitschaft zur Diskussion.

� Desweiteren danke ich der Arbeitsgruppe von Herrn Prof. E. M�uller{Hart-

mann f�ur die freundliche und konstruktive Atmosph�are in den Mitarbeiter-

seminaren.

� Dem Institutsvorstand danke ich f�ur die weitgehende Freistellung von Ver-

pichtungen, die die Durchf�uhrung dieser Arbeit erm�oglicht hat.

� Einen herzlichen Dank auch an die Mitarbeiter des John{von{Neumann In-

stituts und des Zentralinstituts f�ur angewandte Mathematik am Forschungs-

zentrum J�ulich, darunter zuvorderst Herrn Dr. G. Arnold und Herrn Dr. N. At-

tig f�ur die freundliche und kompetente Unterst�utzung bei der Benutzung des

IBM Supercomputers. Eine Reihe von technischen Problemen konnte so gut

und sehr schnell gel�ost werden. Ein Dank auch an Herrn A. Spiegel vom

Rechen{ und Kommunikationszentrum der RWTH Aachen f�ur seinen kom-

petenten Rat in Sachen OpenMP.

� Au�erdem m�ochte ich vielen Kollegen und Freunden f�ur die angenehmen

Stunden innerhalb und au�erhalb des Instituts danken, die mich durch die

vielen Jahre im Institut begleitet haben, darunter Priv.{Doz. Dr. R. Klesse,

Dr. W. Kromen, Dr. P. Wurth, Dr. S. Dahm, Dr. B. Strocka, Dr. J. Kierfeld,

Dr. R. M. Vetter und vielen anderen.

� Ein besonderer Dank auch an Axel Weinkauf f�ur die freundschaftliche At-

mosph�are bei der Arbeit im Institut und auch au�erhalb.

� Meiner Familie danke ich f�ur ihren Beistand und ihr Interesse.

� Nicht zuletzt danke ich Johannes Kl�user f�ur seine Eselsgeduld.

Erkl�arung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbst�andig angefertigt,

die benutzten Quellen und Hilfsmittel vollst�andig angegeben und die Stellen der

Arbeit { einschlie�lich Tabellen, Karten und Abbildungen {, die anderen Werken

im Wortlaut oder Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung

kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakult�at

oder Universit�at zur Pr�ufung vorgelegen hat; dass sie { abgesehen von unten

angegebenen Teilpublikationen { noch nicht ver�o�entlicht worden ist, dass ich eine

solche Ver�o�entlichung vor Abschluss des Promotionsverfahrens nicht vornehmen

werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von

mir vorgelegte Dissertation ist von Frau Priv.{Doz. Dr. Ute L�ow betreut worden.

K�oln, den 13. Dezember 2004

Teilpublikationen

Es wurden keine Teilpublikationen ver�o�entlicht.

Lebenslauf

Pers�onliche Daten

Name: Andreas Sindermann

Geburtsdatum: 20. Mai 1969

Geburtsort: K�oln

Familienstand: ledig

Staatsangeh�origkeit: deutsch

Schulbildung

1975{1979 Ernst-Moritz-Arndt-Grundschule, K�oln

1979{1988 Gymnasium Rodenkirchen, K�oln

Grundwehrdienst

1988{1989 Grundwehrdienst

Hochschulstudium

1989{1997 Studium der Physik an der Universit�at zu K�oln

Diplomarbeit am Institut f�ur Theoretische Physik

�uber Anwendung von Maximum-Flow Algorithmen

auf Grundzustandsprobleme klassischer ungeordneter

Ising-Modelle

seit 1997 Promotion am Institut f�ur Theoretische Physik an der

Universit�at zu K�oln

Wissenschaftliche

Anstellungen

1992{1997 Studentische Hilfskraft und Studentische Aushilfskraft

am Institut f�ur Theoretische Physik und am Regionalen

Rechenzentrum der Universit�at zu K�oln

seit 1997 Wissenschaftlicher Mitarbeiter am Institut f�ur Theore-

tische Physik der Universit�at zu K�oln

